Photonics Systems to Enable Top-Side Wafer-Level Optical and Electrical Test

    公开(公告)号:US20200341191A1

    公开(公告)日:2020-10-29

    申请号:US16856387

    申请日:2020-04-23

    Abstract: An intact semiconductor wafer (wafer) includes a plurality of die. Each die has a top layer including routings of conductive interconnect structures electrically isolated from each other by intervening dielectric material. A top surface of the top layer corresponds to a top surface of the wafer. Below the top layer, each die has a device layer including optical devices and electronic devices. Each die has a cladding layer below the device layer and on a substrate of the wafer. Each die includes a photonic test port within the device layer. For each die, a light transfer region is formed within the intact wafer to extend through the top layer to the photonic test port within the device layer. The light transfer region provides a window for transmission of light into and out of the photonic test port from and to a location on the top surface of the wafer.

    Systems and Methods for Wafer-Level Photonic Testing

    公开(公告)号:US20210124107A1

    公开(公告)日:2021-04-29

    申请号:US17079357

    申请日:2020-10-23

    Abstract: A semiconductor wafer includes a semiconductor chip that includes a photonic device. The semiconductor chip includes an optical fiber attachment region in which an optical fiber alignment structure is to be fabricated. The optical fiber alignment structure is not yet fabricated in the optical fiber attachment region. The semiconductor chip includes an in-plane fiber-to-chip optical coupler positioned at an edge of the optical fiber attachment region. The in-plane fiber-to-chip optical coupler is optically connected to the photonic device. A sacrificial optical structure is optically coupled to the in-plane fiber-to-chip optical coupler. The sacrificial optical structure includes an out-of-plane optical coupler configured to receive input light from a light source external to the semiconductor chip. At least a portion of the sacrificial optical structure extends through the optical fiber attachment region.

    Photonics systems to enable top-side wafer-level optical and electrical test

    公开(公告)号:US11280959B2

    公开(公告)日:2022-03-22

    申请号:US16856387

    申请日:2020-04-23

    Abstract: An intact semiconductor wafer (wafer) includes a plurality of die. Each die has a top layer including routings of conductive interconnect structures electrically isolated from each other by intervening dielectric material. A top surface of the top layer corresponds to a top surface of the wafer. Below the top layer, each die has a device layer including optical devices and electronic devices. Each die has a cladding layer below the device layer and on a substrate of the wafer. Each die includes a photonic test port within the device layer. For each die, a light transfer region is formed within the intact wafer to extend through the top layer to the photonic test port within the device layer. The light transfer region provides a window for transmission of light into and out of the photonic test port from and to a location on the top surface of the wafer.

    Retro Reflector and Associated Methods
    6.
    发明申请

    公开(公告)号:US20200158961A1

    公开(公告)日:2020-05-21

    申请号:US16683123

    申请日:2019-11-13

    Abstract: A grating coupler reflector (retro reflector) is formed within a photonics chip and includes a vertical scattering region, an optical waveguide, and a reflector. The optical waveguide is optically coupled to the vertical scattering region. The reflector is positioned at an end of the optical waveguide. The reflector is configured to reflect light that propagates through the optical waveguide from the vertical scattering region back toward the vertical scattering region. The location of the grating coupler reflector on the photonics chip is determinable by scanning a light emitting active optical fiber over the chip and detecting when light is reflected back into the active optical fiber from the grating coupler reflector. The determined location of the grating coupler reflector on the photonics chip is usable as a reference location for aligning optical fiber(s) to corresponding optical grating couplers on the photonics chip.

    Systems and Methods for Wafer-Level Photonic Testing

    公开(公告)号:US20230343655A1

    公开(公告)日:2023-10-26

    申请号:US18346555

    申请日:2023-07-03

    Abstract: A semiconductor wafer includes a semiconductor chip that includes a photonic device. The semiconductor chip includes an optical fiber attachment region in which an optical fiber alignment structure is to be fabricated. The optical fiber alignment structure is not yet fabricated in the optical fiber attachment region. The semiconductor chip includes an in-plane fiber-to-chip optical coupler positioned at an edge of the optical fiber attachment region. The in-plane fiber-to-chip optical coupler is optically connected to the photonic device. A sacrificial optical structure is optically coupled to the in-plane fiber-to-chip optical coupler. The sacrificial optical structure includes an out-of-plane optical coupler configured to receive input light from a light source external to the semiconductor chip. At least a portion of the sacrificial optical structure extends through the optical fiber attachment region.

    Photonic Systems to Enable Top-Side Wafer-Level Optical and Electrical Test

    公开(公告)号:US20220214497A1

    公开(公告)日:2022-07-07

    申请号:US17701072

    申请日:2022-03-22

    Abstract: An intact semiconductor wafer (wafer) includes a plurality of die. Each die has a top layer including routings of conductive interconnect structures electrically isolated from each other by intervening dielectric material. A top surface of the top layer corresponds to a top surface of the wafer. Below the top layer, each die has a device layer including optical devices and electronic devices. Each die has a cladding layer below the device layer and on a substrate of the wafer. Each die includes a photonic test port within the device layer. For each die, a light transfer region is formed within the intact wafer to extend through the top layer to the photonic test port within the device layer. The light transfer region provides a window for transmission of light into and out of the photonic test port from and to a location on the top surface of the wafer.

    Retro reflector and associated methods

    公开(公告)号:US11137548B2

    公开(公告)日:2021-10-05

    申请号:US16683123

    申请日:2019-11-13

    Abstract: A grating coupler reflector (retro reflector) is formed within a photonics chip and includes a vertical scattering region, an optical waveguide, and a reflector. The optical waveguide is optically coupled to the vertical scattering region. The reflector is positioned at an end of the optical waveguide. The reflector is configured to reflect light that propagates through the optical waveguide from the vertical scattering region back toward the vertical scattering region. The location of the grating coupler reflector on the photonics chip is determinable by scanning a light emitting active optical fiber over the chip and detecting when light is reflected back into the active optical fiber from the grating coupler reflector. The determined location of the grating coupler reflector on the photonics chip is usable as a reference location for aligning optical fiber(s) to corresponding optical grating couplers on the photonics chip.

Patent Agency Ranking