摘要:
The present invention provides an electrically-conductive resin composition for a porous fuel cell bipolar plate capable of forming a porous fuel cell bipolar plate having superior absorption of water produced (resulting in the reduction in a gas permeability) as well as limited elution of impurities (a high rate of electricity generating efficiency). An electrically-conductive resin composition for a porous fuel cell bipolar plate comprising an electrically-conductive material and a resin is provided, and the resin is a resin such as, a powdered resol-type phenolic resin having flow properties of from 5 to 100 mm at 125° C.
摘要:
The present invention provides an electrically-conductive resin composition for a porous fuel cell bipolar plate capable of forming a porous fuel cell bipolar plate having superior absorption of water produced (resulting in the reduction in a gas permeability) as well as limited elution of impurities (a high rate of electricity generating efficiency). An electrically-conductive resin composition for a porous fuel cell bipolar plate comprising an electrically-conductive material and a resin is provided, and the resin is a resin such as, a powdered resol-type phenolic resin having flow properties of from 5 to 100 mm at 125° C.
摘要:
A porous fuel cell separator which is shaped as a porous plate composed of an electrically conductive material and a resin and which has gas flow channels on at least one surface thereof contains a far-infrared radiating material. Even when the separator is exposed to sub-freezing temperatures, the presence of the far-infrared radiating material prevents water within the pores from freezing, and can thus prevent a decline in the power generating efficiency of the fuel cell when it is restarted.
摘要:
The present invention relates to a cosmetic composition a) from about 10% to about 90% of water-in-oil emulsion as a first formulation which comprises i) from about 0.1% to about 15% of an emulsifying crosslinked siloxane elastomer; ii) from about 1% to about 40% of a solvent for the emulsifying crosslinked siloxane elastomers; and iii) from about 40% to about 99% of an aqueous phase; and b) from about 10% to about 90% of a second formulation, wherein the first and second formulations are of different formulation, and wherein when shear stress is applied to the composition during spreading on skin, at least a part of the aqueous phase is released from the first formulation.
摘要:
A separator for use in solid polymer fuel cells has porous areas, dense areas and gas flow channels. The flow channels are defined by flow channel surfaces, some or all of which are formed in the porous areas. The gas flow channels are not readily obstructed by water that forms during power generation. The separator has an adequate strength for use in fuel cells and a low contact resistance.
摘要:
A method of producing a fuel cell separator in which dry granules of a composition for a fuel cell separator mainly containing a conductive material, a binder, and an additive are produced by mixing raw materials including at least the conductive material, the binder, and the additive, granulating the resultant mixture to obtain granules, and drying the granules. The dry granules may be further sized. Then the granules are packed in a mold and hot-press molded. The granules have a residual volatile matter content in a range of 4 weight-% or less, and an average particle size in a range of 200 to 700 &mgr;m (60 to 160 &mgr;m for the sized granules) and a specific particle size distribution.
摘要:
Fuel cell separators having on one side or both sides thereof channels for gas supply and discharge, which channels are formed from compositions composed mainly of thermosetting resin and graphite particles. The compositions are designed to have a flexural modulus of at most 20 GPa and a flexural strength of at least 50 MPa (both measured according to JIS K6911). Also disclosed is a solid polymer type fuel cell system in which part or all of its separators are fuel cell separators as defined above. Due to its high strength and low flexural modulus, the fuel cell separators of the invention do not break as a result of deformation at the time of fuel cell assembly. Moreover, the fuel cell separators of the invention absorb shocks and vibration imparted to the fuel cell system. Therefore, they is useful for automobile fuel cells which are normally subject to vibrations and shocks during operation.
摘要:
Disclosed is a fuel cell separator molded from a fuel cell separator composition mainly containing a conductive material and a binder, characterized in that said separator is specified such that after 3.5 g of a test piece cut from said fuel cell separator is put in 305 mL of pure water and the water is heated at 90° C. for 500 hr, an electric conductivity of the water is 50 &mgr;S/cm or less. The fuel cell separator thus obtained is effective to reduce elution of ions and exhibit a high moldability and a high dimensional stability. Further, a polymer electrolyte fuel cell using the fuel cell separators is effective to exhibit a stable output without reduction in output during operation and enhance the operational efficiency.