Abstract:
Productivity from a subterranean formation is enhanced by pumping into a well penetrating the formation after the well has been drilled a hard water aqueous fluid containing a polymeric stabilizer and a crosslinkable viscosifying polymer such as carboxymethyl guar or carboxymethyl cellulose.
Abstract:
A method includes forming a well treatment fluid by combining an aqueous fluid, a viscosifying agent, a crosslinker, and a rheology modifier containing an aldehyde. The viscosifying agent is crosslinked, increasing viscosity of the fluid. The method includes treating a well with the fluid exhibiting the increased viscosity, chemically changing the aldehyde after the crosslinking and thereby forming an acid, and decreasing viscosity of the crosslinked fluid as a result of forming the acid. The aldehyde may be glyoxal which forms oxalic acid, breaking a crosslink. A well treatment fluid is formulated with ingredients including an aqueous fluid and a viscosifying agent and a crosslinker configured to crosslink the viscosifying agent. The fluid includes a rheology modifier containing an aldehyde. The fluid may lack an aldehyde crosslinking delay additive.
Abstract:
Incorporating at least oil-soluble organic peroxide into a mixture of an aqueous phase and at least one surfactant creates a breaker fluid that is a microemulsion or a nanoemulsion that can then perform as an internal breaker for reducing the viscosity of aqueous fluids gelled with a polymer, such as a crosslinked polysaccharide. One phase of the breaker fluid is water or water-based, e.g. brine, containing at least one oil-soluble organic peroxide as a non-aqueous internal phase that will, over time and optionally with heat, break the polymer-gelled portion of the gel. The overall breaking using the breaker fluid is slower as compared to introducing the organic peroxide breaker in a non-microemulsified or non-nanoemulsified form.
Abstract:
A method includes forming a well treatment fluid by combining an aqueous fluid, a viscosifying agent, a crosslinker, and a rheology modifier containing an aldehyde. The viscosifying agent is crosslinked, increasing viscosity of the fluid. The method includes treating a well with the fluid exhibiting the increased viscosity, chemically changing the aldehyde after the crosslinking and thereby forming an acid, and decreasing viscosity of the crosslinked fluid as a result of forming the acid. The aldehyde may be glyoxal which forms oxalic acid, breaking a crosslink. A well treatment fluid is formulated with ingredients including an aqueous fluid and a viscosifying agent and a crosslinker configured to crosslink the viscosifying agent. The fluid includes a rheology modifier containing an aldehyde. The fluid may lack an aldehyde crosslinking delay additive.
Abstract:
Incorporating at least oil-soluble organic peroxide into a mixture of an aqueous phase and at least one surfactant creates a breaker fluid that is a microemulsion or a nanoemulsion that can then perform as an internal breaker for reducing the viscosity of aqueous fluids gelled with a polymer, such as a crosslinked polysaccharide. One phase of the breaker fluid is water or water-based, e.g. brine, containing at least one oil-soluble organic peroxide as a non-aqueous internal phase that will, over time and optionally with heat, break the polymer-gelled portion of the gel. The overall breaking using the breaker fluid is slower as compared to introducing the organic peroxide breaker in a non-microemulsified or non-nanoemulsified form.
Abstract:
A well servicing fluid includes ingredients including a GLDA salt, a crosslinker, and a viscosifying agent that is not crosslinked by the crosslinker. A well treatment method includes forming a well servicing fluid with ingredients including a GLDA salt, a viscosifying agent, and a crosslinker, the GLDA salt containing a metal cation chelated with a GLDA anion. The well servicing fluid is inserted into a well in a formation. The method includes crosslinking the viscosifying agent and attaining a first viscosity of the well servicing fluid using the crosslinker. After the attaining of the first viscosity, viscosity of the well servicing fluid in the well is decreased to a second viscosity less than the first viscosity by using the GLDA anion. The GLDA salt may be a GLDA calcium salt and the crosslinker may be a zirconium crosslinker.
Abstract:
A well treatment fluid includes an aqueous-based fluid, a crosslinked CMHEC polymer, and a crosslinker. The CMHEC polymer exhibits a DS of 0.2 to 0.6 and a MS of 2.0 to 2.5. The well treatment fluid exhibits a viscosity of at least about 100 cP. A well treatment method includes crosslinking a CMHEC polymer in an aqueous-based fluid at a pH of at least about 6. The crosslinking increases a viscosity of the well treatment fluid to at least about 100 cP. A well is treated with the well treatment fluid at a temperature of at least about 200° F. Another well treatment method includes forming a well treatment fluid from produced water that has a TDS content of at least about 150,000 ppm. The crosslinking increases a viscosity of the well treatment fluid to at least about 100 cP.
Abstract:
Polyboronic compounds useful as delayed crosslinking agents may be produced by using a polyamine as base scaffold and incorporating boron via reaction with intermediate borates which may be formed in the condensation reaction between boric acid and a diol. A di-aldehyde, such as glyoxal, may be introduced following caustic treatment of the reaction mixture of polyaminoboronate to form the polyboronic compound.
Abstract:
A well servicing fluid includes ingredients including a GLDA salt, a crosslinker, and a viscosifying agent that is not crosslinked by the crosslinker. A well treatment method includes forming a well servicing fluid with ingredients including a GLDA salt, a viscosifying agent, and a crosslinker, the GLDA salt containing a metal cation chelated with a GLDA anion. The well servicing fluid is inserted into a well in a formation. The method includes crosslinking the viscosifying agent and attaining a first viscosity of the well servicing fluid using the crosslinker. After the attaining of the first viscosity, viscosity of the well servicing fluid in the well is decreased to a second viscosity less than the first viscosity by using the GLDA anion. The GLDA salt may be a GLDA calcium salt and the crosslinker may be a zirconium crosslinker.
Abstract:
A well treatment method includes forming a well treatment fluid by combining ingredients including a polymer, a crosslinker, an acidifying substance, and a base fluid. Crosslinking increases viscosity of the fluid during a development time. A pH decrease is controlled during the development time using the acidifying substance. The method also includes delaying the development time of the viscosity increase by controlling the pH decrease. A well treatment method includes forming a well treatment fluid by combining ingredients including a hydratable polymer, a crosslinker, an acidifying substance, and a base fluid. The method includes delaying development time of a viscosity increase by controlling a pH decrease without adding further acidifying substance after combining the polymer, crosslinker, acidifying substance, and base fluid. A well treatment fluid formulated with ingredients include a base fluid, a polymer, a crosslinker, and an acidifying substance. The acidifying substance is configured to delay development time.