Abstract:
Cements, such as alkali activated binder, may be used as coatings on proppants, such as sand, to improve the strength thereof. The resulting chemically bonded phosphate ceramic (CBPC) coated proppants show increased compressive strength between about 60 to about 130 MPa, as well as produced fines of lower than about 10 wt % at 10,000 psi closure stress.
Abstract:
A well treatment fluid contains a surface modifying treatment agent having an anchor and a hydrophobic tail. The surface modifying treatment agent is an organophosphorus acid derivative. After the well treatment fluid is pumped into a well penetrating the subterranean formation, the anchor binds to the surface of the formation. The subterranean formation is a siliceous formation or a metal oxide-containing subterranean formation. The anchor bonds to a Si atom when the formation is a siliceous formation and to the metal of the metal oxide when the formation is a metal oxide-containing formation. After being bound to the surface of the formation, frictional drag within the well is reduced. This allows for faster recovery of formation fluids. The bonding of the surface modifying treatment agent onto the formation may further be enhanced by first pre-treating the formation with a non-aqueous fluid. By increasing the number of sites for the surface modifying treatment agent to bind onto the surface of the subterranean formation, productivity is improved.
Abstract:
A well treatment fluid contains a surface modifying treatment agent having an anchor and a hydrophobic tail. The surface modifying treatment agent is an organophosphorus acid derivative. After the well treatment fluid is pumped into a well penetrating the subterranean formation, the anchor binds to the surface of the formation. The subterranean formation is a siliceous formation or a metal oxide-containing subterranean formation. The anchor bonds to a Si atom when the formation is a siliceous formation and to the metal of the metal oxide when the formation is a metal oxide-containing formation. After being bound to the surface of the formation, frictional drag within the well is reduced. This allows for faster recovery of formation fluids. The bonding of the surface modifying treatment agent onto the formation may further be enhanced by first pre-treating the formation with an aqueous fluid. By increasing the number of sites for the surface modifying treatment agent to bind onto the surface of the subterranean formation, productivity is improved.
Abstract:
A well treatment fluid includes an aqueous-based fluid, a crosslinked CMHEC polymer, and a crosslinker. The CMHEC polymer exhibits a DS of 0.2 to 0.6 and a MS of 2.0 to 2.5. The well treatment fluid exhibits a viscosity of at least about 100 cP. A well treatment method includes crosslinking a CMHEC polymer in an aqueous-based fluid at a pH of at least about 6. The crosslinking increases a viscosity of the well treatment fluid to at least about 100 cP. A well is treated with the well treatment fluid at a temperature of at least about 200° F. Another well treatment method includes forming a well treatment fluid from produced water that has a TDS content of at least about 150,000 ppm. The crosslinking increases a viscosity of the well treatment fluid to at least about 100 cP.
Abstract:
A composite having a solid particulate and a surface modifying treatment agent on the solid particulate wherein the surface modifying treatment agent has a hydrophobic tail and an anchor for adhering the hydrophobic tail onto the solid particulate. The anchor may be metal and the hydrophobic tail may be an organo-silicon material, a fluorinated hydrocarbon or both an organo-silicon material and a fluorinated hydrocarbon. The composite may be used as a proppant in a hydraulic fracturing operation as well as a sand control particulate in a gravel packing operation. The presence of the surface modifying treatment agent on the surface of the solid particulate reduces the generation of fines and dust as well as the migration of sand during a hydraulic fracturing operation or a sand control operation. The presence of the surface modifying treatment agent on the surface of the solid particulate further enhances the crush resistance of the solid particulate.
Abstract:
Recovery of fluids from a subterranean formation during a well treatment operation is enhanced by injecting into the formation a treatment fluid comprising a sophorolipid.
Abstract:
Fouling caused by contaminants onto a metallic tubular, flow conduit or vessel in an underground reservoir or extending from or to an underground reservoir may be inhibited by applying onto the surface of the metallic tubular, flow conduit or vessel a treatment agent comprising a hydrophobic tail and an anchor. The anchor attaches the treatment agent onto the surface of the metallic tubular, flow conduit or vessel.
Abstract:
Scales are prevented or inhibited from forming in a well or in a formation penetrated by a well by pumping into the well a fluid comprising a hydratable polymer, a crosslinking agent, such as an organometallic crosslinking agent containing a polyvalent metal and a scale inhibitor selected from the group consisting of polyvinyl sulfonates, a polyacrylamidomethylpropane sulfonic acid, carboxymethyl inulin and sulfonated polyacrylates and mixtures thereof.
Abstract:
Well treatment particulates are coated with polyionic material and a composite is formed comprising multiple layers of polyelectrolyte, each layer composed of polyionic material counter to the polyionic material of the polyelectrolyte layer to which it is adjacent.
Abstract:
A lightweight composite having an activated surface contains a lightweight hollow core particle having cement grains which may be adhered to the hollow core or embedded in the surface of the hollow core. The hollow core particle may be prepared from calcium carbonate and a mixture of clay, such as bentonite, and a glassy inorganic material, such as glass spheres, glass beads, glass bubbles, borosilicate glass and fiberglass.