Abstract:
A compression set sealing element preferably 85A-95A TDI-Ester Polyurethane is compressed axially and retained against extrusion by CEM anti-extrusion rings. The compressed state of the sealing element is locked in by a degradable lock ring assembly. The mandrel is secured to an upper end of a slip cone and a breakable slip ring is secured by a wireline setting tool until the set position is reached. The slip ring breaks into segments that are pulled up the slip cone as the setting tool pushes on a sleeve to axially compress the sealing element and lock in the set. The sealing element is retained against extrusion by CEM anti-extrusion rings. When the setting tool is removed a ball seat is exposed for delivery of a ball to build pressure into the formation for fracturing. The entirety of the plug then disintegrates from well fluid exposure.
Abstract:
A compression set sealing element preferably 85A-95A TDI-Ester Polyurethane is compressed axially and retained against extrusion by CEM anti-extrusion rings. The compressed state of the sealing element is locked in by a degradable lock ring assembly. The mandrel is secured to an upper end of a slip cone and a breakable slip ring is secured by a wireline setting tool until the set position is reached. The slip ring breaks into segments that are pulled up the slip cone as the setting tool pushes on a sleeve to axially compress the sealing element and lock in the set. The sealing element is retained against extrusion by CEM anti-extrusion rings. When the setting tool is removed a ball seat is exposed for delivery of a ball to build pressure into the formation for fracturing. The entirety of the plug then disintegrates from well fluid exposure.
Abstract:
In one aspect, a downhole device for use in a downhole environment is disclosed, including: a first material with a first degradation rate in the downhole environment and at least one cavity, wherein the at least one cavity contains a second material to degrade the first material at a second degradation rate when the second material is exposed to the downhole environment and the first material, the second degradation rate being higher than the first degradation rate. In certain embodiments, the second material is a solid second material. In certain embodiments, the second material is a gel second material. In certain embodiments the downhole device further includes a protective material to control exposure of the second material to the downhole environment.
Abstract:
Shear member designs in various formats are presented with additional features for segment retention and subsequent removal after a shearing event and removal of the tool from a subterranean location. In some embodiments a portion of the shear member is retained by threads so that the segment stays in the part and then can be removed at the surface with putting a notch in the segment and removing it with a screwdriver. In another embodiment a retaining pin in an intersecting bore can hold onto a sheared remnant of the shear pin by pushing the remnant laterally in the bore that it is mounted. Another design for a shear ring uses a split design with the right angle portion of the ring that gets sheared appearing in segments so that the ring can be rapidly snapped into a groove at its outer periphery followed by a retaining cap facilitating removal.
Abstract:
A seal assembly features radially stacked sealing elements separated by a ring shaped structural member with the structural member configured to fold on itself as the inner and outer sealing elements are axially compressed during the setting process. The structural member remains embedded in the outer sealing element when the assembly is set. Seal rings flank the inner and outer sealing element and feature an outwardly facing bevel to contact a conforming bevel shape on extrusion ring assemblies. During axial compression the extrusion rings are pushed out with the seal rings and then the inner and outer sealing elements are axially compressed as the structural member's ends come together and its middle folds. The structural member creates gaps to allow fluid to escape during setting.
Abstract:
A vibratory tool for use in a tubular string to prevent sticking or to release a stuck string features a fluid operated dart valve working in conjunction with an impact sleeve to deliver continuous axial jarring blows in opposed directions as long as flow is maintained. Movement of one of those components axially in opposed directions opens and closes access to opposed lateral ports so that a lateral vibration is also established as flow cyclically occurs and stops sequentially at opposed lateral outlets.
Abstract:
A vibratory tool for use in a tubular string to prevent sticking or to release a stuck string features a fluid operated dart valve working in conjunction with an impact sleeve to deliver continuous axial jarring blows in opposed directions as long as flow is maintained. Movement of one of those components axially in opposed directions opens and closes access to opposed lateral ports so that a lateral vibration is also established as flow cyclically occurs and stops sequentially at opposed lateral outlets.
Abstract:
In one aspect, a downhole device for use in a downhole environment is disclosed, including: a first material with a first degradation rate in the downhole environment and at least one cavity, wherein the at least one cavity contains a second material to degrade the first material at a second degradation rate when the second material is exposed to the downhole environment and the first material, the second degradation rate being higher than the first degradation rate. In certain embodiments, the second material is a solid second material. In certain embodiments, the second material is a gel second material. In certain embodiments the downhole device further includes a protective material to control exposure of the second material to the downhole environment.
Abstract:
An intelligent dart or ball or other shape is dropped or pumped into a borehole that has multiple valves for access to the formation through which fractures are initiated. The intelligent object engages with the valves as it passes with retractable engagement dogs that are outwardly biased but not to the degree needed to find support unless the valve in question is the one that needs to be operated. In that event the dogs become supported and pressure is applied to the object to shift the valve to the open position. The object can be released at a later time remotely or can be milled out. Subsequent objects can be landed in the same sleeve after the initial object is released to close it or to close the open port by moving a second sleeve against a first sleeve. Fracturing in any order is envisioned.
Abstract:
Shear member designs in various formats are presented with additional features for segment retention and subsequent removal after a shearing event and removal of the tool from a subterranean location. In some embodiments a portion of the shear member is retained by threads so that the segment stays in the part and then can be removed at the surface with putting a notch in the segment and removing it with a screwdriver. In another embodiment a retaining pin in an intersecting bore can hold onto a sheared remnant of the shear pin by pushing the remnant laterally in the bore that it is mounted. Another design for a shear ring uses a split design with the right angle portion of the ring that gets sheared appearing in segments so that the ring can be rapidly snapped into a groove at its outer periphery followed by a retaining cap facilitating removal.