Abstract:
The present invention provides compounds of formula 1 wherein X1 and X2 are independently from each other O, S or Se, and an electronic device comprising the compounds as semiconducting material.
Abstract:
The present invention provides a polymer comprising a unit of formula, wherein R1 and R2 are independently from each other C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, phenyl or a 5 to 8 membered heterocyclic ring system, wherein each of the C1-30-alkyl, C2-30-alkenyl or C2-30-alkynyl group may be substituted with 1 to 10 substituents independently selected from the group consisting of halogen, —CN, —NO2, —OH, —NH2, —NH(C1-20-alkyl), —N(C1-20-alkyl)2, —NH—C(O)—(C1-20-alkyl), —S(O)2OH, —CHO, —C(O)—C1-20-alkyl, —C(O)OH, —C(O)—OC1-20-alkyl, —C(O)NH2, —CO(O)NH—C1-20-alkyl, —C(O)N(C1-20-alkyl)2, —O—C1-20-alkyl, —O—C(O)—C1-20-alkyl, —SiH3, SiH2(C1-20-alkyl), SiH(C1-20-alkyl)2, Si(C1-20-alkyl)3, C4-8-cycloalkyl, phenyl and a 5 to 8 membered heterocyclic ring system, and phenyl and the 5 to 8 membered heterocyclic ring system may be substituted with 1 to 5 C1-16-alkyl groups, is 1, 2 or 3 and n is an integer from 2 to 10'000, a process for the preparation of the polymer and an electronic device comprising the polymer.
Abstract:
The present invention provides compounds of formula (1) wherein o is 1, 2 or 3, p is 0, 1 or 2, n is 0, 1 or 2, m is 0, 1 or 2, and A is a mono- or polycyclic ring system, which may contain at least one heteroatom, and an electronic device comprising the compounds as semiconducting material.