Abstract:
The present invention relates to a process for reacting isopulegol to menthone in the gas phase and to the use of the reaction products thus prepared as additives in foods, cosmetics, pharmaceutical products, tobacco formulations, household products, and laundry care products.
Abstract:
Process for obtaining formic acid by thermal separation of a stream comprising formic acid and a tertiary amine (I), in which, in step (a), a liquid stream comprising formic acid, methanol, water and tertiary amine (I) is produced by combining methyl formate, water and tertiary amine (I), from there in step (b), methanol is separated off and in step (c), formic acid is removed by distillation from the liquid stream obtained in a distillation apparatus, wherein, when methyl formate, water and tertiary amine (I) are combined, methyl formate, water and optionally tertiary amine (I) are first introduced in step (a1) in a molar ratio of 0≦n(amine to a1)/n(mefo to a1)≦0.1, and from 70 to 100% of the hydrolysis equilibrium possible is set and then, in step (a2), tertiary amine (I) is introduced in a molar ratio of 0.1≦n(amine to a2)/n(mefo to a1)≦2, and the mixture is reacted.
Abstract:
Process for preparing methyl formate by carbonylation of methanol by means of carbon monoxide in a carbonylation reactor in the presence of a catalyst system comprising alkali metal formate and alkali metal alkoxide to give a reaction mixture (RM) which comprises methyl formate, alkali metal formate, alkali metal alkoxide and possibly unreacted methanol and unreacted carbon monoxide and is taken from the carbonylation reactor, wherein the reaction mixture (RM) comprises at least 0.5% by weight of alkali metal alkoxide based on the total weight of the reaction mixture (RM) and the molar ratio of alkali metal formate to alkali metal alkoxide in the reaction mixture (RM) is greater than 1.
Abstract:
Process for obtaining formic acid by thermal separation of a stream comprising formic acid and a tertiary amine (I), in which a liquid stream comprising formic acid and tertiary amine (I) is produced by combining tertiary amine (I) and a formic acid source, secondary components comprised therein are separated off, formic acid is removed by distillation from the resulting liquid stream in a distillation apparatus, where the bottom output from the distillation apparatus is separated into two liquid phases, and the upper liquid phase is recirculated to the formic acid source and the lower liquid phase is recirculated to the separation of the secondary components and/or to the distillation apparatus, wherein low boilers are removed by distillation from the upper liquid phase and recirculated to the depleted stream.
Abstract:
The present invention relates to a process for preparing cyclic compounds having at least eight carbon atoms and at least one keto group, to the cyclic compounds obtained by this process and to the use thereof, in particular as fragrance or for providing a fragrance.
Abstract:
Process for obtaining formic acid by thermal separation of a stream comprising formic acid and a tertiary amine (I), in which a liquid stream comprising formic acid, tertiary amine (I) and water is produced by combining tertiary amine (I) and a formic acid source in the presence of water, water and organic decomposition products of the tertiary amine (I) are removed and formic acid is removed by distillation from the resulting liquid stream in a distillation apparatus, wherein the stream comprising water and organic decomposition products of the tertiary amine (I) which have been separated off is separated into two liquid phases, the upper liquid phase is removed and the lower, water-comprising liquid phase is recirculated to the formic acid source.
Abstract:
A process for preparing 2,6-dimethyl-5-heptenal, comprising oxidizing citral of which more than 50% are present as geranial with hydrogen peroxide in the presence of a catalyst comprising a Baeyer-Villiger oxidation catalyst, preferably a tin-containing molecular sieve.
Abstract:
The present invention relates to a process for producing 2,6-dimethyl-5-hepten-1-al, which comprises reacting 3,7-dimethyl-1,6-octadiene (dihydromyrcene, beta-citronellene) with N2O in a solvent or solvent mixture containing at least one solvent having a proton-donating functional group.
Abstract:
Process for preparing methyl formate by carbonylation of methanol by means of carbon monoxide in a carbonylation reactor in the presence of a catalyst system comprising alkali metal formate and alkali metal alkoxide to give a reaction mixture (RM) which comprises methyl formate, alkali metal formate, alkali metal alkoxide and possibly unreacted methanol and unreacted carbon monoxide and is taken from the carbonylation reactor, wherein the reaction mixture (RM) comprises at least 0.5% by weight of alkali metal alkoxide based on the total weight of the reaction mixture (RM) and the molar ratio of alkali metal formate to alkali metal alkoxide in the reaction mixture (RM) is greater than 1.
Abstract:
Process for obtaining formic acid by thermal separation of a stream comprising formic acid and a tertiary amine (I), in which a liquid stream comprising formic acid and tertiary amine (I) is produced by combining tertiary amine (I) and a formic acid source, secondary components comprised therein are separated off, formic acid is removed by distillation from the resulting liquid stream in a distillation apparatus, where the bottom output from the distillation apparatus is separated into two liquid phases, and the upper liquid phase is recirculated to the formic acid source and the lower liquid phase is recirculated to the separation of the secondary components and/or to the distillation apparatus, wherein low boilers are removed by distillation from the upper liquid phase and recirculated to the depleted stream.