Abstract:
A process for making a colored composite pavement structure comprising silylated glass aggregate particles and a polymeric binder composition is disclosed. Systems and methods are also disclosed for providing a colored composite material that cures into a pavement structure. In one embodiment, a colorant concentrate is provided by combining an inorganic colorant with a portion of a first component of a polymeric binder composition. The colorant concentrate can then be combined with the first and second components of the polymeric binder composition to provide a colored polymeric binder composition. The colored polymeric binder composition may then be applied to silylated glass aggregate particles to provide a colored composite material that cures into a pavement structure.
Abstract:
Sprayable polyurethane compositions, in the form of spray polyurethane foams or low rise adhesives, when spray applied in the area of spray application at any given time, having monomeric MDI contents in the spray application area of no more than 20 parts per billion as measured in accordance with PEL Method 47 and having a viscosity of from 100 to 3,000 cP at 25° C. according to ASTM D2196.
Abstract:
A composite material comprises aggregate and an elastomeric composition. The elastomeric composition comprises the reaction product of an isocyanate component and an isocyanate-reactive component. The isocyanate component comprises a polymeric isocyanate, and optionally, an isocyanate-prepolymer. The isocyanate-reactive component comprises a hydrophobic polyol and a chain extender having at least two hydroxyl groups and a molecular weight of from about 62 to about 220. The chain extender is present in the isocyanate-reactive component in an amount of from about 1 to about 20 parts by weight based on 100 parts by weight of the isocyanate-reactive component. The aggregate may be rock, crumb rubber, and/or glass. The composite material has excellent physical properties and may be formed underwater, used in various locations, and used in various applications, such as for pavement, revetments, etc. Methods of forming and using the composite material and systems for forming the elastomeric composition are also disclosed.
Abstract:
Sprayable polyurethane compositions, in the form of spray polyurethane foams or low rise adhesives, when spray applied in the area of spray application at any given time, having monomeric MDI contents in the spray application area of no more than 20 parts per billion as measured in accordance with PEL Method 47 and having a viscosity of from 100 to 3,000 cP at 25° C. according to ASTM D2196.
Abstract:
A process for making a composite pavement structure comprising primed glass aggregate particles and a polymeric binder composition is disclosed. Systems and methods are also disclosed for the priming of glass aggregate particles. In one embodiment, the glass aggregate particles range from about 0.1 to about 0.5 inch in diameter and are exposed to a coupling agent in solution, for example an aqueous aminosilane solution, in an amount of about 1 to about 10 parts by weight of solution based on 100 parts by weight of the glass aggregate particles wherein the aqueous solution contains about 0.01 to about 5.0 parts by weight coupling agent based on 100 parts by weight of solution. After exposure, the primer is allowed to react and bond with the glass aggregate particles for a predetermined time period to provide primed glass particles, for example silylated glass particles, which are then dried. Once the primed glass and polymeric binder composition are mixed, they are allowed react and bond to provide a composite pavement structure.
Abstract:
A composite pavement structure comprises a wearing course layer and a base course layer disposed below the wearing course layer. The wearing course layer comprises aggregate, e.g. glass and rock, and an elastomeric composition. The elastomeric composition comprises the reaction product of an isocyanate component and an isocyanate-reactive component. The isocyanate component comprises a polymeric isocyanate, and optionally, an isocyanate-prepolymer. The isocyanate-reactive component comprises a hydrophobic polyol and a chain extender having at least two hydroxyl groups and a molecular weight of from about 62 to about 220. The chain extender is present in the isocyanate-reactive component in an amount of from about 1 to about 20 parts by weight based on 100 parts by weight of the isocyanate-reactive component. The base course layer comprises aggregate which is the same or different than the aggregate of the wearing course layer. Methods of forming the composite pavement structure are also disclosed.