Abstract:
Polymers comprising at least one unit of formula (1) wherein n is 0 or 1, m and p are independently from each other 0, 1, 2, 3, 4, 5 or 6, provided that the sum of n, m and p is at least 2, and n and p are not 0 at the same time, Ar1 and Ar2 are independently from each other C6-14-arylene or C6-14-aryl, which may be substituted with 1 to 4 substituents independently selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-8-cycloalkyl, C6-14-aryl and 5 to 14 membered heteroaryl, and X1, X2 and X3 are independently from each other and at each occurrence O or S, compositions comprising these polymers, and electronic devices comprising a layer formed from the compositions. Preferably, the electronic device is an organic field effect transistor and the layer is the dielectric layer.
Abstract:
The present invention relates to an electronic device comprising a dielectric material, which dielectric material comprises a copolymer comprising styrene and maleimic acid and derivatives thereof as structural units, a process for the preparation of the electronic device and to the use of the copolymer as dielectric material, especially as dielectric layer in printed electronic devices such as capacitors and organic field-effect transistors.
Abstract:
Oxacycloolefinic polymers as typically obtained by metathesis polymerization using Ru-catalysts, show good solubility and are well suitable as dielectric material in electronic devices such as capacitors and organic field effect transistors.
Abstract:
The present invention provides compositions comprising a) at least one polymer consisting of one polymerblock A and at least two polymerblocks B, wherein each polymerblock B is attached to the polymerblock A. and wherein at least 60 mol % of the monomer units of polymerblock B are selected from the group consisting of Formulae (1A), (1B), (1C), (1D), (1E), (1F) and 1G, 1H and 1I wherein R1, R2, R3, R4, R5, R6, R7 and R8 are independently and at each occurrence H or C1-10-alkyl, and b) at least one crosslinking agent carrying at least two azide groups, as well as to layers formed from these compositions, electronic devices comprising these layers and to specific polymers encompassed by the polymers of the composition.