INJECTION-MOULDED ARTICLE CONTAINING SURFACE-MODIFIED SILICATES

    公开(公告)号:US20200255655A1

    公开(公告)日:2020-08-13

    申请号:US16639294

    申请日:2018-08-09

    Applicant: BASF SE

    Abstract: The present invention relates to an injection molded article comprising: i) 27% to 87% by weight based on the total weight of the components i to iv of a polyester constructed from aliphatic dicarboxylic acids and aliphatic diols; ii) 3% to 15% by weight based on the total weight of the components i to iv of an aliphatic-aromatic polyester comprising: ii-a) 30 to 70 mol % based on the components ii-a to ii-b of a C6-C18-dicarboxylic acid; ii-b) 30 to 70 mol % based on the components ii-a to ii-b of terephthalic acid; ii-c) 99 to 100 mol % based on the components ii-a to ii-b of 1,3-propanediol or 1,4-butanediol; ii-d) 0% to 1% by weight based on the components ii-a to ii-c of a chain extender and/or branching agent; iii) 0% to 35% by weight based on the total weight of the components i to iv of polylactic acid; iv) 10% to 35% by weight based on the total weight of the components i to iv of at least one surface-modified silicate selected from the group consisting of: kaolin, muscovite, montmorillonite, talc and wollastonite.

    SILANE-MODIFIED, SILICATE-CONTAINING INJECTION-MOULDED ITEMS

    公开(公告)号:US20210155792A1

    公开(公告)日:2021-05-27

    申请号:US16639313

    申请日:2018-08-09

    Applicant: BASF SE

    Abstract: The present invention relates to an injection molded article comprising: i) 30% to 90% by weight based on the total weight of the components i to iii of a biodegradable polyester comprising: i-a) 90 to 100 mol % based on the components a to b of succinic acid; i-b) 0 to 10 mol % based on the components a to b of one or more C6-C20 dicarboxylic acids; i-c) 99 to 100 mol % based on the components a to b of 1,3-propanediol or 1,4-butanediol; i-d) 0% to 1% by weight based on the components a to c of a chain extender and/or branching agent; ii) 0% to 35% by weight based on the total weight of the components i to iii of polylactic acid; iii) 10% to 35% by weight based on the total weight of the components i to iii of at least one methacryloylsilane- or vinylsilane-modified silicate selected from the group consisting of: kaolin, muscovite, montmorillonite, talc and wollastonite.

    ARTICLES PRODUCED BY THERMOFORMING

    公开(公告)号:US20170260388A1

    公开(公告)日:2017-09-14

    申请号:US15309711

    申请日:2015-04-29

    Applicant: BASF SE

    Abstract: The present invention relates to an item produced by thermoforming, comprising: i) from 45 to 59% by weight, based on the total weight of components i to iv, of a biodegradable polyester comprising: i-a) from 90 to 100 mol %, based on components i-a to i-b, of succinic acid; i-b) from 0 to 10 mol %, based on components i-a to i-b, of one or more C6-C20 dicarboxylic acids; i-c) from 98 to 102 mol %, based on components i-a to i-b, of 1,3-propanediol or 1,4-butanediol; i-d) from 0.05 to 1% by weight, based on components i-a to i-c, of a chain extender or branching agent; ii) from 5 to 14% by weight, based on the total weight of components i to iv, of an aliphatic-aromatic polyester comprising: ii-a) from 30 to 70 mol %, based on components ii-a to ii-b, of a C6-C18-dicarboxylic acid; ii-b) from 30 to 70 mol %, based on components ii-a to ii-b, of terephthalic acid; ii-c) from 98 to 100 mol %, based on components ii-a to ii-b, of 1,3-propanediol or 1,4-butanediol; ii-d) from 0.05 to 1% by weight, based on components ii-a to ii-c, of a chain extender or branching agent; iii) from 15 to 24% by weight, based on the total weight of components i to iv, of polylactic acid; iv) from 10 to 35% by weight, based on the total weight of components i to iv, of at least one mineral filler; where the following applies to the compounded material comprising components i to iv: the ratio of component i to component iii in the compounded material is from 2.2 to 3.2, and the MVR of the compounded material is from 1 to 10 cm3/10 min in accordance with DIN EN 1133-1 of Mar. 1, 2012 (190° C., 2.16 kg).

Patent Agency Ranking