Abstract:
The present invention relates to the use of a filament comprising a core material (CM) comprising a ceramic material precursor (CMP) and the core material (CM) is coated with a layer of shell material (SM) comprising a thermoplastic polymer as a support material in a fused filament fabrication process. Further, the invention relates to three-dimensional objects and a process for the preparation thereof.
Abstract:
The present invention relates to a method for producing particles containing carotenoid and/or vitamin and/or omega-3 fatty acids and/or phytosterols and/or conjugated linoleic acids, having a narrow particle size distribution and uniform spherical shape and density, and also to particles obtainable by this method and use thereof as food supplements, foodstuffs, feedstuffs, body care products and medicaments. The particles according to the invention exhibit improved storage stability compared to the prior art.
Abstract:
The application relates to a moisture-variable protective layer having an sd value at a relative air humidity of 10% and a temperature of 12 to 35° C. at least a factor of 5.0 higher than the sd value at a relative air humidity of 90% and a temperature of 12 to 35° C., where the moisture-variable protective layer has been applied in liquid form by means of a coating composition, to a process for production thereof, to an insulation material and an insulation system comprising the moisture-variable protective layer, and to the use of a moisture-variable protective layer according to the invention in an insulation system which is free of support constructions and other heat bridges that penetrate the insulation layer, such as solid dowels or anchors, or as a coating on an insulation render.
Abstract:
The present invention relates to the use of a filament comprising a core material (CM) comprising a ceramic material precursor (CMP) and the core material (CM) is coated with a layer of shell material (SM) comprising a thermoplastic polymer as a support material in a fused filament fabrication process. Further, the invention relates to three-dimensional objects and a process for the preparation thereof.
Abstract:
A composition for the immediate stopping of a free-radical polymerization comprises a) an inhibitor for the free-radical polymerization selected from among phenothiazines, b) an aprotic solvent and c) an ionic liquid. It serves to stabilize free-radically polymerizable monomers against free-radical polymerization. For the immediate stopping of free-radical polymerizations, the composition is added to a free-radically polymerizing system.
Abstract:
The present invention relates to the use of a polymer comprising polymerized units (A) and (B): (A) at least one first monomer of the formula (I) where n is 3 to 12; m is 0 to 3; R1 is C1-C10-alkyl, C2-C10-alkenyl, aryl or aralkyl; R2, R3 and R4 are each, independently of one another, hydrogen, C1-C10-alkyl, C2-C10-alkenyl, aryl or aralkyl; and (B) at least one second monomer of the formula (II) where R5, R6 and R7 are each, independently of one another, hydrogen, C1-C10-alkyl, C2-C10-alkenyl, aryl or aralkyl; R8 is C1-C20-alkyl, C2-C10alkenyl, aryl or aralkyl; as a support material in a fused filament fabrication process.
Abstract:
The use of a mixture (M) comprising (a) from 40 to 70% by volume of an inorganic powder (IP) based on the total volume of the mixture (M), (b) from 30 to 60% by volume based on the total volume of the mixture (M) of a binder (B) comprising (b1) from 50 to 96% by weight of at least one polyoxymethylene (POM) based on the total weight of the binder (B), (b2) from 2 to 35% by weight of at least one polyolefin (PO) based on the total weight of the binder (B), (b3) from 2 to 40% by weight of at least one further polymer (FP) based on the total weight of the binder (B) in a fused filament fabrication process.
Abstract:
A structural element with a controllable heat transfer coefficient comprises a frame. A first sheet and a second sheet opposite one another are arranged in the frame. The sheets and the frame have the effect of defining a closed-off volume which is filled with at least one gas. At least one two-dimensional element is arranged between the sheets. An upper intermediate space is formed between the two-dimensional element and the frame vertically upwardly and a lower intermediate space is formed between the two-dimensional element in the frame vertically downwardly. A first cavity is between the first sheet and the two-dimensional element. A second cavity is between the two-dimensional element and the second sheet. The cavities are connected via the upper intermediate space and the lower intermediate space such that a convection flows between the cavities via the intermediate spaces. At least one means arranged in the intermediate spaces controls the convection flow.