Abstract:
The present invention relates to a process for the preparation of 1-(2,6,6-trimethylcyclohexylyalkan-3-ols, in particular 1-(2,6,6-trimethylcyclohexyl)-hexan-3-ol. The invention further relates to 5-alkoxy-1-(2,6,6-trimethylcyclohexenyl)-1-alken-3-ones and the use of these as a fragrance or as flavor, to a fragrance containing composition and/or a fragranced product containing 5-alkoxy-1-(2,6,6-trimethylcyclohexenyl)-1-alken-3-ones and to a method for imparting or modifying a scent or a flavor to a composition by including said alkoxyalkenones into such composition.
Abstract:
The present invention relates to 2,3,7-Trimethyloct-6-enyl acetate and 3,7-dimethyl-2-methylene-oct-6-enyl acetate and derivatives thereof and their use as aroma chemicals.
Abstract:
The present invention relates to a process for preparing, 4-bis(ethoxymethyl)cyclohexane, which comprises reacting 1,4-bis(hydroxymethyl)cyclohexane with ethyl chloride in the presence of an inorganic base, a solvent and a phase transfer catalyst to yield a reaction mixture containing 1,4-bis(ethoxymethyl)cyclohexane, where the inorganic base is selected from alkali metal hydroxides and earth alkaline metal hydroxides and where the solvent is selected from water or a mixture of water with at least one organic solvent.
Abstract:
A process for preparing D-glucaro-6,3-lactone from a salt of D-glucaric acid is provided. The process includes: adding a mineral acid to a pre-cooled solution including a salt of D-glucaric acid, water, and acetone to obtain a crude mixture; allowing the crude mixture to rise to a temperature in a range of ≥15° C. to ≤35° C. and stirring the crude mixture; filtrating the crude mixture and washing with an acetone and water solvent mixture to obtain a filtrate; concentrating the filtrate under vacuum pressure to obtain a concentrated filtrate having a water content in a range of ≥20.0 wt. % to ≤40.0 wt. %, relative to an overall weight of the concentrated filtrate; storing the concentrated filtrate at a temperature in a range of ≥0° C. to ≤5° C., and optionally repeating the concentrating and storing steps to obtain a precipitate comprising D-glucaro-6,3-lactone.
Abstract:
A process for preparing D-glucaro-6,3-lactone from a salt of D-glucaric acid is provided. The process includes: adding a mineral acid to a pre-cooled solution including a salt of D-glucaric acid, water, and acetone to obtain a crude mixture; allowing the crude mixture to rise to a temperature in a range of ≥15° C. to ≤35° C. and stirring the crude mixture; filtrating the crude mixture and washing with an acetone and water solvent mixture to obtain a filtrate; concentrating the filtrate under vacuum pressure to obtain a concentrated filtrate having a water content in a range of ≥20.0 wt. % to ≤40.0 wt. %, relative to an overall weight of the concentrated filtrate; storing the concentrated filtrate at a temperature in a range of ≥0° C. to ≤5° C., and optionally repeating the concentrating and storing steps to obtain a precipitate comprising D-glucaro-6,3-lactone.
Abstract:
Described are acetylene bridged linkers, metal-organic frameworks produced thereof, processes for producing the linkers and the metal-organic frameworks, and the use of the metal-organic frameworks. The metal-organic frameworks possess an enhanced ability to adsorb and desorb high amounts of gases, in particular methane or hydrogen. The metal-organic frameworks have a high porosity and, thus, a high inner surface.
Abstract:
Described are acetylene bridged linkers, metal-organic frameworks produced thereof, processes for producing the linkers and the metal-organic frameworks, and the use of the metal-organic frameworks. The metal-organic frameworks possess an enhanced ability to adsorb and desorb high amounts of gases, in particular methane or hydrogen. The metal-organic frameworks have a high porosity and, thus, a high inner surface.
Abstract:
The present invention relates to a method for preparing a compound of formula (I). The present invention also relates to compounds of formula (A) or a compound in the form of a stereoisomer. The present invention further relates to the use of a compound of formula (A) as aroma chemical.
Abstract:
The present invention relates to a process for preparing 1-(2,6,6-trimethylcyclohex-2-en-1-yl)but-2-en-1-one, which comprises a) providing 6,10-dimethylundeca-1,5,9-trien-4-ol, b) oxidizing 6,10-dimethylundeca-1,5,9-trien-4-ol provided in step a) with an oxidizing agent in the presence of at least one organic nitroxyl radical, at least one nitrate compound and an inorganic solid to yield 6,10-dimethylundeca-1,5,9-trien-4-one, c) reacting the 6,10-dimethylundeca-1,5,9-trien-4-one obtained in step b) with an acid to yield 1-(2,6,6-trimethylcyclohex-2-en-1-yl)but-2-en-1-one.