Abstract:
The present invention relates to porous films comprising (A) from 51 wt.-% to 99.9 wt.-% based on the total weight of the film of at least one porous metal-organic framework material, the material comprising at least one at least bidentate organic compound coordinated to at least one metal ion; (B) from 0.1 wt.-% to 49 wt.-% based on the total weight of the film of at least one fibrillated fluoropolymer; and (C) 0 wt.-% to 48.9 wt.-% based on the total weight of the film of an additive component. The invention further relates to a composition for preparing such a film and its use.
Abstract:
The present invention relates to a method for the preparation of a treated zeolitic material having a BEA framework structure comprising the steps of: (i) providing a zeolitic material having a BEA framework structure, wherein the BEA framework structure comprises YO2 and X2O3, wherein Y is a tetravalent element, and X is a trivalent element, and wherein the zeolitic material having a BEA framework structure is obtainable and/or obtained from an organotemplate-free synthetic process; (ii) calcining the zeolitic material provided in step (i) at a temperature of 650° C. or more; and (iii) treating the calcined zeolitic material obtained from step (ii) with an aqueous solution having a pH of 5 or less, as well as to zeolitic materials per se preferably obtainable according to the inventive method and to their use, and to a process for converting oxygenates to olefins employing the inventive zeolitic materials.
Abstract:
Described is a process for the treatment of a gas stream containing nitrogen oxides. The process comprises the steps of: (1) providing a gas stream containing one or more nitrogen oxides; (2) contacting the gas stream provided in step (1) with a transition metal containing zeolitic material having a BEA-type framework structure for reacting one or more of the nitrogen oxides; wherein the zeolitic material is obtainable from an organotemplate-free synthetic process. Also described is an apparatus for the treatment of a gas stream comprising containing nitrogen oxides.
Abstract:
The present invention relates to an organotemplate-free synthetic process for the production of a zeolitic material having a CHA-type framework structure comprising YO2, X2O3, and optionally comprising Z2O5, wherein said process comprises the steps of: (1) providing a mixture comprising one or more sources for YO2, one or more sources for X2O3, and seed crystals having a CHA framework structure, wherein the CHA framework structure of the seed crystals comprises YO2, X2O3, and optionally comprises Z2O5; and (2) crystallizing the mixture obtained in step (1); wherein Y is a tetravalent element, X is a trivalent element, and Z is a pentavalent element, wherein optionally one or more sources for Z2O5 are further provided in step (1), and wherein if the CHA framework of the seed crystals does not contain Z2O5, the seed crystals then have a YO2:X2O3 molar ratio of 5 or greater than 5.
Abstract translation:本发明涉及一种用于生产具有包含YO 2,X 2 O 3和任选地包含Z 2 O 5的CHA型骨架结构的沸石材料的有机模板合成方法,其中所述方法包括以下步骤:(1)提供包含 YO2的一种或多种来源,X 2 O 3的一种或多种来源和具有CHA骨架结构的晶种,其中晶种的CHA骨架结构包含YO 2,X 2 O 3,并且任选包含Z 2 O 5; 和(2)使步骤(1)中获得的混合物结晶; 其中Y是四价元素,X是三价元素,Z是五价元素,其中在步骤(1)中还可以任选地提供一种或多种Z2O5源,并且其中如果晶种的CHA骨架不包含 Z2O5,然后晶种的YO 2:X 2 O 3摩尔比为5或大于5。
Abstract:
The present disclosure relates to a process preparating a zeolitic material having an AEI-type framework structure, wherein the framework structure comprises SiO2 and X2O3 and X is a trivalent element, and wherein the process comprises: (1) preparing a mixture comprising one or more cationic structure directing agents comprising a heterocyclic amine ring, seed crystals, and a first zeolitic material comprising SiO2 and X2O3 in its framework structure and having an FAU-type framework structure; and (2) heating the mixture to obtain a second zeolitic material comprising SiO2 and X2O3 in its framework structure and having an AEI-type framework structure.
Abstract:
The present invention relates to a process for the production of a zeolitic material having an MWW framework structure comprising YO2 and B2O3, wherein Y stands for a tetravalent element, said process comprising (i) preparing a mixture comprising one or more sources for YO2, one or more sources for B2O3, one or more organotemplates, and seed crystals, (ii) crystallizing the mixture obtained in (i) for obtaining a layered precursor of the MWW framework structure, (iii) calcining the layered precursor obtained in (ii) for obtaining the zeolitic material having an MWW framework structure, wherein the one or more organotemplates have the formula (I) R1R2R3N (I) wherein R1 is (C5-C8)cycloalkyl, and wherein R2 and R3 are independently from each other H or alkyl, and wherein the mixture prepared in (i) and crystallized in (ii) contains 35 wt.-% or less of H2O based on 100 wt.-% of YO2 contained in the mixture prepared in (i) and crystallized in (ii), as well as to a synthetic boron-containing zeolite which is obtainable and/or obtained according to the inventive process and to its use.
Abstract:
The present invention relates to a process for the calcination of a zeolitic material, wherein said process comprises the steps of (i) providing a zeolitic material comprising YO2 and optionally further comprising X2O3 in its framework structure in the form of a powder and/or of a suspension of the zeolitic material in a liquid, wherein Y stands for a tetravalent element and X stands for a trivalent element; (ii) atomization of the powder and/or of the suspension of the zeolitic material provided in (i) in a gas stream for obtaining an aerosol; (iii) calcination of the aerosol obtained in (ii) for obtaining a calcined powder; as well as to a zeolitic material obtainable and/or obtained according the inventive process, and to its use as a molecular sieve, as an adsorbent, for ion-exchange, as a catalyst, and/or as a catalyst support.
Abstract:
The present invention relates to an organotemplate-free synthetic process for the production of a zeolitic material having a CHA-type framework structure comprising YO2, X2O3, and optionally comprising Z2O5, wherein said process comprises the steps of: (1) providing a mixture comprising one or more sources for YO2, one or more sources for X2O3, and seed crystals having a CHA framework structure, wherein the CHA framework structure of the seed crystals comprises YO2, X2O3, and optionally comprises Z2O5; and (2) crystallizing the mixture obtained in step (1); wherein Y is a tetravalent element, X is a trivalent element, and Z is a pentavalent element, wherein optionally one or more sources for Z2O5 are further provided in step (1), and wherein if the CHA framework of the seed crystals does not contain Z2O5, the seed crystals then have a YO2:X2O3 molar ratio of 5 or greater than 5.
Abstract translation:本发明涉及一种用于生产具有包含YO 2,X 2 O 3和任选地包含Z 2 O 5的CHA型骨架结构的沸石材料的有机模板合成方法,其中所述方法包括以下步骤:(1)提供包含 YO2的一种或多种来源,X 2 O 3的一种或多种来源和具有CHA骨架结构的晶种,其中晶种的CHA骨架结构包含YO 2,X 2 O 3,并且任选包含Z 2 O 5; 和(2)使步骤(1)中获得的混合物结晶; 其中Y是四价元素,X是三价元素,Z是五价元素,其中在步骤(1)中还可以任选地提供一种或多种Z2O5源,并且其中如果晶种的CHA骨架不包含 Z2O5,然后晶种的YO 2:X 2 O 3摩尔比为5或大于5。
Abstract:
The present invention relates to a process for recovering oil from a subterranean formation by injecting both solid particles and water into the formation. An oil-in-water emulsion that is stabilized by solid particles is formed in the pores of the formation. This emulsion is recovered from the subterranean formation.
Abstract:
The present invention relates to a process for the calcination of a zeolitic material, wherein said process comprises the steps of (i) providing a zeolitic material comprising YO2 and optionally further comprising X2O3 in its framework structure in the form of a powder and/or of a suspension of the zeolitic material in a liquid, wherein Y stands for a tetravalent element and X stands for a trivalent element; (ii) atomization of the powder and/or of the suspension of the zeolitic material provided in (i) in a gas stream for obtaining an aerosol; (iii) calcination of the aerosol obtained in (ii) for obtaining a calcined powder; as well as to a zeolitic material obtainable and/or obtained according the inventive process, and to its use as a molecular sieve, as an adsorbent, for ion-exchange, as a catalyst, and/or as a catalyst support.