摘要:
New compliant polymer seals and methods for making and sealing energy storage devices are disclosed. Compliant polymer seals become viscous at the operation temperature which seals cathode and anode chambers following assembly.
摘要:
Sodium energy storage devices employing aspects of both ZEBRA batteries and traditional Na—S batteries can perform better than either battery alone. The hybrid energy storage devices described herein can include a sodium anode, a molten sodium salt catholyte, and a positive electrode that has active species containing sulfur. Additional active species can include a transition metal source and NaCl. As a product of the energy discharge process, Na2Sx forms in which x is less than three.
摘要翻译:采用ZEBRA电池和传统Na-S电池方面的钠能量储存装置可以比单独使用电池的性能更好。 本文所述的混合储能装置可包括钠阳极,熔融钠盐阴极电解液和具有含硫活性物质的正电极。 另外的活性物质可以包括过渡金属源和NaCl。 作为能量放电过程的产物,形成其中x小于3的Na 2 S x。
摘要:
Rechargeable batteries include a NiyFe1-y cathode where 0≤y≤1, an anode comprising a current collector, a porous separator positioned between the cathode and the anode, and an electrolyte comprising MAlX4, wherein M is Na, Li, K, or a combination thereof, and X is Cl, Br, I, or a combination thereof, and wherein the electrolyte is a solid at temperatures less than 50° C. The batteries are temperature activated. The electrolyte temperature is increased above its melting point while charging and reduced below the melting point for energy storage, such as seasonal energy storage. The electrolyte temperature is increased above the melting point again to discharge the battery.
摘要:
Embodiments of a solid-state electrolyte comprising magnesium borohydride, polyethylene oxide, and optionally a Group IIA or transition metal oxide are disclosed. The solid-state electrolyte may be a thin film comprising a dispersion of magnesium borohydride and magnesium oxide nanoparticles in polyethylene oxide. Rechargeable magnesium batteries including the disclosed solid-state electrolyte may have a coulombic efficiency ≧95% and exhibit cycling stability for at least 50 cycles.
摘要:
Rechargeable batteries include a NiyFe1-y cathode where 0≤y≤1, an anode comprising a current collector, a porous separator positioned between the cathode and the anode, and an electrolyte comprising MAlX4, wherein M is Na, Li, K, or a combination thereof, and X is Cl, Br, I, or a combination thereof, and wherein the electrolyte is a solid at temperatures less than 50° C. The batteries are temperature activated. The electrolyte temperature is increased above its melting point while charging and reduced below the melting point for energy storage, such as seasonal energy storage. The electrolyte temperature is increased above the melting point again to discharge the battery.
摘要:
Magnesium energy storage devices that take advantage of magnesium-based anodes while maintaining practical energy densities can be useful for large-scale energy storage as well as other applications. One such device can include a negative electrode having magnesium and a positive electrode material that can flow in a batch or continuous manner. The flowable positive electrode material can result in an increased practical energy density because the fresh active material can be flowed to the positive electrode, and as a result can be theoretically infinite in size. The positive electrode can include a cathode suspension contacting a positive current collector and having particulates of a cathode magnesium intercalation compound, a cathode magnesium conversion compound, a redox active species, or combinations thereof.
摘要:
Electrolytes for Mg-based energy storage devices can be formed from non-nucleophilic Mg2+ sources to provide outstanding electrochemical performance and improved electrophilic susceptibility compared to electrolytes employing nucleophilic sources. The instant electrolytes are characterized by high oxidation stability (up to 3.4 V vs Mg), improved electrophile compatibility and electrochemical reversibility (up to 100% coulombic efficiency). Synthesis of the Mg2+ electrolytes utilizes inexpensive and safe magnesium dihalides as non-nucleophilic Mg2+ sources in combination with Lewis acids, MRaX3-a (for 3≧a≧1). Furthermore, addition of free-halide-anion donors can improve the coulombic efficiency of Mg electrolytes from nucleophilic or non-nucleophilic Mg2+ sources.
摘要:
An anolyte for a redox-flow battery (RFB) comprising a metal-ion complex and a phosphonate-based ligand having a phosphonic group wherein the phosphonic acid group is directly coordinated to a metal-ion.
摘要:
A dense β″-alumina/zirconia composite solid electrolyte and process for fabrication are disclosed. The process allows fabrication at temperatures at or below 1600° C. The solid electrolytes include a dense composite matrix of β″-alumina and zirconia, and one or more transition metal oxides that aid the conversion and densification of precursor salts during sintering. The composite solid electrolytes find application in sodium energy storage devices and power-grid systems and devices for energy applications.
摘要:
Embodiments of a solid-state electrolyte comprising magnesium borohydride, polyethylene oxide, and optionally a Group IIA or transition metal oxide are disclosed. The solid-state electrolyte may be a thin film comprising a dispersion of magnesium borohydride and magnesium oxide nanoparticles in polyethylene oxide. Rechargeable magnesium batteries including the disclosed solid-state electrolyte may have a coulombic efficiency ≧95% and exhibit cycling stability for at least 50 cycles.