Abstract:
Methods and compositions related to the selective, specific disruption of multiple ligand-receptor signaling interactions, such as ligand-receptor interactions implicated in disease, are disclosed. These interactions may involve multiple cytokines in a single receptor family or multiple ligand receptor interactions from at least two distinct ligand-receptor families. The compositions may comprise polypeptides having composite sequences that comprise sequence fragments of two or more ligand binding sites. The methods and compositions may involve sequence fragments of two or more ligand binding sites that are arranged to conserve the secondary structure of each of the ligands from which the sequence fragments were taken.
Abstract:
Methods and compositions related to the selective, specific disruption of multiple ligand-receptor signaling interactions, such as ligand-receptor interactions implicated in disease, are disclosed. These interactions may involve multiple cytokines in a single receptor family or multiple ligand receptor interactions from at least two distinct ligand-receptor families. The compositions may comprise polypeptides having composite sequences that comprise sequence fragments of two or more ligand binding sites. The methods and compositions may involve sequence fragments of two or more ligand binding sites that are arranged to conserve the secondary structure of each of the ligands from which the sequence fragments were taken.
Abstract:
The γc-family cytokines, Interleukin-2 (IL-2), Interleukin-4 (IL-4), Interleukin-7 (IL-7), Interleukin-9 (IL-9), Interleukin-15 (IL-15), and Interleukin-21 (IL-21), are associated with important human diseases, such as leukemia, autoimmune diseases, collagen diseases, diabetes mellitus, skin diseases, degenerative neuronal diseases and graft-versus-host disease (GvHD). Thus, inhibitors of γc-cytokine activity are valuable therapeutic and cosmetic agents as well as research tools. The present embodiments relate to the design of peptide antagonists based on the consensus γc-subunit binding site to inhibit γc-cytokine activity. In several embodiments, peptide antagonists exhibit Simul-Block activity, inhibiting the activity of multiple γc-cytokine family members.
Abstract:
Embodiments relate to peptide antagonists of γc-family cytokines, which is associated with important human diseases, such as leukemia, autoimmune diseases, collagen diseases, diabetes mellitus, skin diseases, degenerative neuronal diseases and graft-versus-host disease (GvHD). Thus, inhibitors of γc-cytokine activity are valuable therapeutic and cosmetic agents as well as research tools. Traditional approaches to inhibiting γc-cytokine activity involve raising neutralizing antibodies against each individual γc-cytokine family member/receptor subunit. However, success has been limited and often multiple γc-cytokine family members co-operate to cause the disease state. Combinatorial use of neutralizing antibodies raised against each factor is impractical and poses an increased risk of adverse immune reactions. The present embodiments overcome these shortcomings by utilizing peptide antagonists based on the consensus γc-subunit binding site to inhibit γc-cytokine activity. Such approach allows for flexibility in antagonist design. In several embodiments, peptides exhibit Simul-Block activity, inhibiting the activity of multiple γc-cytokine family members.
Abstract:
Methods and compositions related to the selective, specific disruption of multiple ligand-receptor signaling interactions, such as ligand-receptor interactions implicated in disease, are disclosed. These interactions may involve multiple cytokines in a single receptor family or multiple ligand receptor interactions from at least two distinct ligand-receptor families. The compositions may comprise polypeptides having composite sequences that comprise sequence fragments of two or more ligand binding sites. The methods and compositions may involve sequence fragments of two or more ligand binding sites that are arranged to conserve the secondary structure of each of the ligands from which the sequence fragments were taken.
Abstract:
Embodiments relate to peptide antagonists of -family cytokines, which is associated with important human diseases, such as leukemia, autoimmune diseases, collagen diseases, diabetes mellitus, skin diseases, degenerative neuronal diseases and graft-versus-host disease (GvHD). Thus, inhibitors of -cytokine activity are valuable therapeutic and cosmetic agents as well as research tools. Traditional approaches to inhibiting yc-cytokine activity involve raising neutralizing antibodies against each individual -cytokine family member/′ receptor subunit. However, success has been limited and often multiple -cytokine family members co-operate to cause the disease state. Combinatorial use of neutralizing antibodies raised against each factor is impractical and poses an increased risk of adverse immune reactions. The present embodiments overcome these shortcomings by utilizing peptide antagonists based on the consensus -subunit binding site to inhibit -cytokine activity. Such approach allows for flexibility in antagonist design. In several embodiments, peptides exhibit Simul-Block activity, inhibiting the activity of multiple -cytokine family members.
Abstract:
Methods and compositions related to the selective, specific disruption of multiple ligand-receptor signaling interactions, such as ligand-receptor interactions implicated in disease, are disclosed. These interactions may involve multiple cytokines in a single receptor family or multiple ligand receptor interactions from at least two distinct ligand-receptor families. The compositions may comprise polypeptides having composite sequences that comprise sequence fragments of two or more ligand binding sites. The methods and compositions may involve sequence fragments of two or more ligand binding sites that are arranged to conserve the secondary structure of each of the ligands from which the sequence fragments were taken.
Abstract:
Peptide antagonists of γc-family cytokines, which is associated with important human diseases, such as leukemia, autoimmune diseases, collagen diseases, diabetes mellitus, skin diseases, degenerative neuronal diseases and graft-versus-host disease (GvHD). Thus, inhibitors of γc-cytokine activity are valuable therapeutic and cosmetic agents as well as research tools. Traditional approaches to inhibiting γc-cytokine activity involve raising neutralizing antibodies against each individual γc-cytokine family member/receptor subunit. However, success has been limited and often multiple γc-cytokine family members co-operate to cause the disease state. Combinatorial use of neutralizing antibodies raised against each factor is impractical and poses an increased risk of adverse immune reactions. The present embodiments overcome these shortcomings by utilizing peptide antagonists based on the consensus γc-subunit binding site to inhibit γc-cytokine activity. Such approach allows for flexibility in antagonist design. The disclosed peptides exhibit Simul-Block activity, inhibiting the activity of multiple γc-cytokine family members.
Abstract:
Methods and compositions related to the selective, specific disruption of multiple ligand-receptor signaling interactions, such as ligand-receptor interactions implicated in disease, are disclosed. These interactions may involve multiple cytokines in a single receptor family or multiple ligand receptor interactions from at least two distinct ligand-receptor families. The compositions may comprise polypeptides having composite sequences that comprise sequence fragments of two or more ligand binding sites. The methods and compositions may involve sequence fragments of two or more ligand binding sites that are arranged to conserve the secondary structure of each of the ligands from which the sequence fragments were taken.
Abstract:
The γc-family cytokines, Interleukin-2 (IL-2), Interleukin-4 (IL-4), Interleukin-7 (IL-7), Interleukin-9 (IL-9), Interleukin-15 (IL-15), and Interleukin-21 (IL-21), are associated with important human diseases, such as alopecia and alopecia associated disorders. Compositions, methods, and kits to modulate signaling by at least one γc-cytokine family member for inhibiting, ameliorating, reducing a severity of, treating, delaying the onset of, or preventing at least one alopecia related disorder are described.