Abstract:
Systems, methods, and devices of the various embodiments enable parallel control of multiple uninterruptable power modules (“UPMs”) connecting multiple power sources to a bus in parallel. A UPM may be comprised of at least one controller coupled to at least one inverter, and the UPM may be configured to convert the DC voltage output from a DC source to an AC voltage, such as an AC voltage suitable for output to an AC bus. A UPM may receive a power sharing command and control its at least one inverter based at least in part on the received power sharing command to output a voltage to a bus.
Abstract:
Various embodiments may provide non-isolated single-input dual-output (SIDO) bi-directional buck-boost direct current (DC) to DC (DC-DC) converters. Various embodiments may provide a method for controlling a buck duty cycle of the non-isolated SIDO bi-directional buck-boost DC-DC converter such that a first voltage measured across a first portion of the non-isolated SIDO bi-directional buck-boost DC-DC converter is maintained at less than a voltage of a first load and a second voltage measured across a second portion of the non-isolated SIDO bi-directional buck-boost DC-DC converter is maintained at less than a voltage of a second load.
Abstract:
A microgrid includes a power system configured to output system power and an automatic transfer switch (ATS). The ATS includes a normal terminal that is electrically connected to a grid power line configured to receive grid power from a power utility, an emergency terminal that is electrically connected to a system power line configured to receive system power from the power system, and a load terminal that is electrically connected to a critical load line configured to provide power to a critical load. The microgrid also includes a bypass line electrically connected to the system power line and the critical load line, so as to bypass the ATS, and a circuit breaker configured to control power flow through the bypass line.
Abstract:
An air-cooled electronics module is disclosed. The air-cooled electronics module includes a housing and a heat exchanger disposed within the housing and separating the housing into a first portion and a second portion. The air-cooled electronics module also includes one or more electronic components disposed within the first portion, and one or more additional electronic components disposed within the second portion. The air-cooled electronics module further includes at least one fan configured to blow air into the second portion. The air in the first portion is substantially stagnant.
Abstract:
A method of controlling an inverter having a three phase output and a plurality of single phase loads connected to respective one of the three phases of the three phase output includes determining if a first phase of the three phase output has a heavier load than a second phase of the three phase output, and providing a higher output power from the inverter to the first phase than to the second phase if it is determined that the first phase has a heavier load than the second phase.
Abstract:
Systems, methods, and devices of the various embodiments enable parallel control of multiple uninterruptable power modules (“UPMs”) connecting multiple power sources to a bus in parallel. A UPM may be comprised of at least one controller coupled to at least one inverter, and the UPM may be configured to convert the DC voltage output from a DC source to an AC voltage, such as an AC voltage suitable for output to an AC bus. A UPM may receive a power sharing command and control its at least one inverter based at least in part on the received power sharing command to output a voltage to a bus.