Abstract:
A dimming module and method for manufacturing the same, and a dimming glass, relate to the field of smart glass technology. The dimming module includes: a first dimming structure (10) and a second dimming structure (20). Each of the first dimming structure (10) and the second dimming structure (20) includes a first substrate (1), a second substrate (2) and a liquid crystal layer (3), and a first flexible circuit board (4) and a second flexible circuit board (5). The first substrate (1) is provided with a first binding area (11), and a first electrode (6) on one side facing the liquid crystal layer (3). The second substrate (2) is provided with a second binding area (21), and a plurality of second electrodes (7) on one side facing the liquid crystal layer (3).
Abstract:
A light-adjusting structure, a method for manufacturing the light-adjusting structure, and a light-adjusting module are provided, which belong to the field of display technology, the light-adjusting structure includes: a first flexible substrate and a second flexible substrate oppositely arranged; a first transparent electrode and a second transparent electrode which are located between the first flexible substrate and the second flexible substrate; a first alignment layer located on a side of the first flexible substrate facing towards the second flexible substrate; a second alignment layer located on a side of the second flexible substrate facing towards the first flexible substrate; and a spacer and a dye liquid crystal layer which are located between the first alignment layer and the second alignment layer. The solutions of the present disclosure can meet light-adjusting requirements of vehicle windows.
Abstract:
The present invention relates to the field of display, particularly to a display panel, a driving method thereof and a display device. The display panel comprises an array substrate provided with first electrodes and second electrode arranged in a same layer and a color filter substrate provided with third electrodes. The first electrodes and the second electrodes are alternately arranged in parallel at intervals and electrically isolated from each other. The second electrodes and the third electrodes are arranged correspondingly in space. The present invention has the following beneficial effects: by performing rectangular segmentation on the original plate-shaped common electrodes, the display panel ensures that common electrodes during display and driving electrodes during touch are electrically isolated from each other; in addition, as the diving electrodes are connected by redundant data lines, a display device comprising the display panel has a good image display effect and a higher touch sensitivity.
Abstract:
An array substrate, a capacitive in-cell touch panel and a touch display device are provided. The common electrode layer (20) of the array substrate (1) includes a plurality of touch drive electrodes (6) and a plurality of common electrodes (7), the respective touch drive electrodes (6) extending in a row direction, and the respective common electrodes (7) extending in a column direction. The pixel electrode layer (30) includes a plurality of first conductors (8), projections of the respective first conductors (8) on the array substrate (1) are located in a region where the common electrodes (7) are located, and at least partially overlap with the data line (5) whose projection is located in the region where the common electrodes (7) are located, and a plurality of the first conductors (8) whose projections are located in a same region where the common electrodes (7) are located constitute a touch sensing electrode. Since the touch drive electrodes (6) and the touch sensing electrode (9) are respectively disposed on the common electrode layer (20) and the pixel electrode layer (30), the array substrate with a touch function can be prepared without adding an additional fabrication process, so its preparation process is simple, which reduces the production cost and improves the production efficiency.
Abstract:
A light-adjusting glass is provided to include: a first toughened glass layer, a first adhesive layer, a first substrate, a second substrate, a second adhesive layer, a second toughened glass layer and supporting spacers between the first and second substrates, which are sequentially stacked; materials of the first and second adhesive layers are melted under the conditions that a temperature is in a range of 130° C. to 150° C. and a pressure is in a range of 12 bar to 14 bar, and are solidified after being cooled; the light-adjusting glass further includes an edge sealing structure around the first and second substrates, and the edge sealing structure, the first and second substrates are enclosed to form a gap filled with a liquid crystal; the edge sealing structure includes a liquid crystal pouring port therein; a sealing glue is at an opening of the liquid crystal pouring port and seals the opening.
Abstract:
A display panel includes a plurality of display elements over a substrate, each comprising including at least one first light-emitting element for emitting a first light out of a first light-emitting surface and at least one second light-emitting element for emitting a second light out of a second light-emitting surface opposing to the first light-emitting surface. Each first light-emitting element has a first light-emitting layer between two first electrodes, which are respectively transparent and reflective so that the first light can transmit out of the first light-emitting surface. Each second light-emitting element includes a second light-emitting layer between two second electrodes, which are respectively transparent and reflective so that the second light transmits out of the second light-emitting surface. The first and second light-emitting surface are below and over the substrate respectively. A driving circuit for driving is configured to drive the display panel.
Abstract:
A color film substrate, a method of manufacturing the color film substrate, a display panel and a display device are provided by the present disclosure. The color film substrate includes a plurality of color light-filtering units on a base substrate, at least one of the plurality of color light-filtering units includes N light-filtering sub-units, thicknesses of color filter layers of the N light-filtering sub-units are different, and N is an integer greater than 1.
Abstract:
An in-cell touch substrate and a method for driving the same, and a display panel are provided. The in-cell touch substrate comprises a plurality of common electrodes time-division multiplexed as touch electrodes and a plurality of touch signal lines, each of the touch electrodes is stacked with at least one of the touch signal lines, a first insulation layer is provided between said each of the touch electrodes and the at least one of the touch signal lines, said each of the touch electrodes is electrically connected with one of the at least one of the touch signal lines through a first via hole in the first insulation layer, and is also stacked with at least one redundant line, redundant lines stacked with different touch electrodes are insulated with each other, said each of the touch electrodes is electrically connected with all of the at least one redundant line.
Abstract:
An array substrate, a method for fabricating the same and a display device are disclosed. The substrate comprises: a gate electrode (11) and a gate line (12) disposed on a base substrate (00), an active layer (20) disposed on the film layer comprising the gate electrode (11) and the gate line (12). The substrate further comprises: a pixel electrode (40) disposed on the same layer as and electrically insulated from the active layer (20); a drain electrode (31), a source electrode (32) and a date line (33) disposed on the film layer comprising the active layer (20) and the pixel electrode (40), wherein the drain electrode (31) is electrically connected to the pixel electrode (40) directly; a common electrode layer (50) and a plurality of wires (60) disposed on the film layer having the drain electrode (31), the source electrode (32) and the date line (33) and electrically insulated from each of the drain electrode (31), the source electrode (32), the date line (33) and the pixel electrode (40); wherein the plurality of wires (60) is disposed on a different layer from the common electrode layer (50), the common electrode layer (50) comprises a plurality of self-capacitive electrodes (51) disposed in a same layer and insulated from each other, and each of the wires (60) is electrically connected to a corresponding self-capacitive electrode (51) through a via hole (100). The array substrate solves the problem of having a relatively large touch blind area in self-capacitive touch control structures.
Abstract:
A light adjustment device includes a first substrate and a second substrate that are arranged opposite to each other, a light adjustment module, and an ultraviolet light blocking layer. The light adjustment module is located between the first substrate and the second substrate. The ultraviolet light blocking layer is located between the first substrate and the light adjustment module or located inside the light adjustment module. A refractive index of the ultraviolet light blocking layer is greater than a refractive index of the first substrate.