Abstract:
A shift register unit includes a first output control circuit, a first output circuit, a second output control circuit, a second output circuit, a reset circuit, and a node set circuit. The node set circuit is configured to periodically transfer a first voltage having an inactive level to a first node within the shift register unit during being enabled.
Abstract:
A supplement resetting module for a gate driver circuit, including a pull-up control unit, a pull-down control unit, a clock signal input end, a predetermined level input end, a first control signal input end, a second control signal input end and a signal output end. A control end of the pull-up control unit is connected to the clock signal input end, an output end of the pull-up control unit is connected to the signal output end, a first control end of the pull-down control unit is connected to the first control signal input end, a second control end of the pull-down control unit is connected to the second control signal input end, an input end of the pull-down control unit is connected to the predetermined level input end, and an output end of the pull-down control unit is connected to the signal output end.
Abstract:
An array substrate, a manufacturing method of the array substrate and a display device including the array substrate are disclosed. The array substrate includes a substrate (1), a common electrode layer (401) located on the substrate (1) and a conductive layer (2) provided on a surface of the substrate (1), the conductive layer (2) and the common electrode layer (401) are electrically connected in parallel. The common electrode and the conductive layer are formed into a parallel structure, so that the resistance can be decreased, and in turn, crosstalk, greenish and other phenomenon of the array substrate are reduced, thereby promoting the picture quality of the display device.
Abstract:
A Gate Driver on Array circuit and a driving method thereof, and a display device. The Gate Driver on Array circuit includes at least one group of shift registers, each group of shift registers includes a plurality of shift registers in cascade, the plurality of shift registers including a first shift register, a second shift register connected after the first shift register, and a third shift register connected after the second shift register, wherein the third shift register is provided with an initializing terminal connected to an output terminal of the first shift register.
Abstract:
The present disclosure provides a display substrate such that each pixel unit of the display substrate includes a switching circuit and a control circuit, and the switching circuit is connected to a corresponding gate line, a control circuit of a respective pixel unit, and a corresponding pixel electrode. The control circuit is configured to transmit a data signal on a corresponding data line to a switching circuit of the respective pixel unit under control of a corresponding control signal line, and n is an integer not less than 2. The present disclosure further provides a display device including the above display substrate and a driving method for the above display substrate.
Abstract:
A data driving circuit comprises a plurality of driving units, each of the driving units comprising first, second, third and fourth switch units, each of the switch units comprising first and second input terminals and an output terminal; the output terminals being output terminals of the data driving circuit; two data control terminals, one of which is respectively connected to the first input terminals of the first switch unit and the second switch unit, the other of which is respectively connected to the first input terminals of the third switch unit and the fourth switch unit; a first switching control terminal, connected to the second input terminal of one of the switch units connected to the same data control terminal; a second switching control terminal, connected to the second input terminal of the other of the switch units connected to the same data control terminal.
Abstract:
The present disclosure relates to a touch display panel, a method and a device for driving the touch display panel. The method is applied to the touch display panel which includes L gate lines arranged sequentially and M touch scan lines arranged sequentially, where both L and M are positive integers larger than 1. The method includes dividing a duration for which the touch display panel displays each frame of image into N control time intervals with each of the N control time intervals including a display refresh time and a touch time arranged sequentially, where N is an integer larger than 1, during the duration for which the touch display panel displays each frame of image, driving the L gate lines sequentially in N display refresh times, and driving the M touch scan lines sequentially for K times in N touch times, where K is larger than 1.
Abstract:
The present invention provides a shift register unit, a gate driving circuit and a display device, which belongs to the field of display technology. The shift register unit of the present invention comprises: an input module, a pull-up module, a pull-down control module, a pull-down module, a reset module and a discharge module.
Abstract:
The present disclosure provides a shift register unit, a gate electrode drive circuit and a display apparatus, which relates to a technical field of display. The shift register unit includes an input reset module, a pull up module, a control module and a pull down module. By inputting a high level into the second signal input end of the input reset module in the touch scan to maintain the level at the pull up control node, the electrical leak effects at the pull up control node may be avoided efficiently. In this way, the defects of insufficient charging rate of the row pixels may be avoided and the dark lines or bad bright lines may be suppressed.
Abstract:
The present disclosure provides a gate drive unit, a driving method thereof and a gate drive circuit. The gate drive unit includes a shift register and a plurality of output control modules. Each of the output control modules is connected to a corresponding clock scanning signal line and a corresponding first scanning signal output terminal, respectively. Each of the output control modules includes a first output control submodule and an output reset submodule. The first output control submodule is connected to a signal output terminal of the shift register, the corresponding clock scanning signal line and the corresponding first scanning signal output terminal, and configured to send a clock scanning signal of the corresponding clock scanning signal line to the corresponding first scanning signal output terminal, under control of a signal outputted by the signal output terminal of the shift register.