Abstract:
Aspects of oversubscription monitoring are described. In one embodiment, oversubscription monitoring includes accumulating an amount of data that arrives at a network component over at least one epoch of time. Further, a core processing rate at which data can be processed by the network component is calculated. Based on the amount of data and the core processing rate, it is determined whether the network component is operating in an oversubscribed region of operation. In one embodiment, when the network component is operating in the oversubscribed region of operation, certain quality of service metrics are monitored. Using the monitored metrics, a network operation display object may be generated for identifying or troubleshooting network errors during an oversubscribed region of operation of the network component.
Abstract:
To reduce latency in a network device that buffer packets in different queues based on class of service, packets received from a network are stored in physical queues according to a class of service associated with the packets and a class of service associated with each of the physical queues. The physical queues are scheduled based quality of service requirements of their associated class of service. The physical queues are shadowed by virtual queues, and whether congestion exists in at least one of the virtual queues is determined. Packets departing from at least one of the physical queues are marked when congestion exists in at least one of the virtual queues. The service rate of the virtual queues is set to be less than or equal to a port link rate of the network device.