Abstract:
A system, method and apparatus for power saving using burst-mode transmission over point-to-point physical connections. In one embodiment, a physical layer device (PHY) is provided that includes a data detector that is configured to generate a first control signal upon receipt of a non-idle code group over an interface between the PHY and a media access control (MAC) device and to generate a second control signal when all data received from the MAC device has been transmitted by the physical layer device. The PHY also includes a laser for transmission of data over an optical network cable, the laser being configured to perform a first transition from an off state to an on state based on the first control signal, and to perform a second transition from the on state back to the off state based on the second control signal.
Abstract:
A system and method for bandwidth-delay-product (BDP) decoupler. A BDP decoupler mechanism is provided that enables an intermediate network device to facilitate an efficient transfer of traffic from a server to a client. In one embodiment, the intermediate network device can be configured to buffer received data and control the transmission of the buffered data to the client device based on acknowledgment messaging received by the intermediate network device from the client device.
Abstract:
One embodiment provides a system for controlling flow rate in an EPON. The system includes an OLT, an ONUs coupled to the OLT via a passive optical splitter, a switch coupled to a port located on the ONU, and a flow-control mechanism. The ONU includes one or more queues corresponding to one or more classes of Services, and one or more ports. The switch includes a plurality of UNI ports, and the switch is configured to switch one or more upstream traffic flows belonging to the one or more classes of services from the plurality of UNI ports. The flow-control mechanism is configured to set a flow rate of an upstream traffic flow of certain class of service originated from a UNI port. The flow-control mechanism sets the flow rate based on status of an ONU queue corresponding to the class of service of the upstream traffic flow.
Abstract:
A device for pre-emption in passive optical networks may include a first media access control (MAC) module configured to receive a first type of data traffic and transmit the first type of data traffic to a MAC merge module. The device may further include a second media access control (MAC) module configured to receive a second type of data traffic and transmit the second type of data traffic to the MAC merge module. The device may further include the MAC merge module configured to receive the first and second types of data traffic from the first and second MAC modules, respectively, and provide the first and second types of data traffic for transmission over a port. The MAC merge module may be configured to pre-empt the transmission of the first type of data traffic over the port in favor of the second type of data traffic.
Abstract:
A system, method and apparatus for power saving using burst-mode transmission over point-to-point physical connections. In one embodiment, a physical layer device (PHY) is provided that includes a data detector that is configured to generate a first control signal upon receipt of a non-idle code group over an interface between the PHY and a media access control (MAC) device and to generate a second control signal when all data received from the MAC device has been transmitted by the physical layer device. The PHY also includes a laser for transmission of data over an optical network cable, the laser being configured to perform a first transition from an off state to an on state based on the first control signal, and to perform a second transition from the on state back to the off state based on the second control signal.
Abstract:
In general, the 1G-EPON standard specifies its upstream waveband broadly to allow for low cost lasers to be used to transmit upstream. Often, however, the lasers actually used by many 1G-ONUs to transmit upstream only occupy a narrow waveband that does not overlap with the upstream waveband specified by the 10G-EPON standard. The present disclosure is directed to systems and methods that exploit this fact to efficiently provide for the coexistence of 10G-EPON and 1G-EPON over the same set of optical fibers in the upstream direction.
Abstract:
Systems and methods are provided to use of out-of-band (OOB) channels for the transport of network-synchronization signals and network control information. These OOB channels transport synchronization and control channels over low-frequency bands outside of the frequency bands used for the data channels. Locating expensive network-synchronization functions in the optical network unit (ONU) and sharing the derived synchronization signals among multiple downstream customer premises equipment (CPE) devices results in cost savings and provides a means for maintaining a continuous, end-to-end synchronization reference, even during periods when the data channels on the copper network segment are in an energy-efficiency mode (e.g., a low-power and/or sleep mode).
Abstract:
A dynamic readjustment of an energy efficient network control policy parameters in an optical network unit based on a Service Interoperability in Ethernet Passive Optical Network (SIEPON) protocol. The access link between the OLT and ONU has distinct properties that can be used to enhance the energy efficiency control policy on the network facing side of the ONU. In one embodiment, an adjustment mechanism can be based on the receipt, by an optical interface in an ONU, of a control command from an upstream OLT, wherein the control command is configured to provide a limitation on an available time period during which the ONU can communicate with the OLT over an optical fiber cable.
Abstract:
A service provisioning enabled management in Service Interoperability in Ethernet Passive Optical Network (SIEPON) switching subsystem. The delivery of network services to each of a plurality of subscribers coupled to an optical network unit (ONU) can be defined individually by the service provider. The service-specific functions within the ONU can be configured based on knowledge of the levels of provisioning of network services.
Abstract:
A system and method for Service Interoperability in Ethernet Passive Optical Network (SIEPON) energy saving statistics. Energy saving statistics can be collected from a plurality of subordinate nodes in a point-to-multipoint network through a mechanism that aggregates energy saving statistics as those energy saving statistics are reported upstream. Such aggregation of energy saving statistics can be advantageous in that the aggregated energy saving information can appear uncorrelated to individual subordinate nodes. Privacy concerns are thereby addressed.