Abstract:
An apparatus and method is disclosed to compensate for one or more offsets in a communications signal. A communications receiver may carry out an offset adjustment algorithm to compensate for the one or more offsets. An initial search procedure determines one or more signal metric maps for one or more selected offset adjustment corrections from the one or more offset adjustment corrections. The offset adjustment algorithm determines one or more optimal points for one or more selected offset adjustment correction based upon the one or more signal maps. The adaptive offset algorithm adjusts each of the one or more selected offset adjustment corrections to their respective optimal points and/or each of one or more non-selected offset adjustment corrections to a corresponding one of a plurality of possible offset corrections to provide one or more adjusted offset adjustment corrections. A tracking mode procedure optimizes the one or more adjusted offset adjustment corrections.
Abstract:
An apparatus and method is disclosed to compensate for one or more offsets in a communications signal. A communications receiver may carry out an offset adjustment algorithm to compensate for the one or more offsets. An initial search procedure determines one or more signal metric maps for one or more selected offset adjustment corrections from the one or more offset adjustment corrections. The offset adjustment algorithm determines one or more optimal points for one or more selected offset adjustment correction based upon the one or more signal maps. The adaptive offset algorithm adjusts each of the one or more selected offset adjustment corrections to their respective optimal points and/or each of one or more non-selected offset adjustment corrections to a corresponding one of a plurality of possible offset corrections to provide one or more adjusted offset adjustment corrections. A tracking mode procedure optimizes the one or more adjusted offset adjustment corrections.
Abstract:
A low-power high-swing current-mode logic (CML) driver circuit includes a first differential-pair and a second differential-pair. The first differential-pair includes first transistors, and is coupled to a first voltage supply that supplies a first voltage. The second differential-pair includes second transistors, and a common node of the second differential-pair is coupled to a second voltage supply. The second voltage supply supplies a second voltage that is higher than the first voltage. Control terminals of the first transistors are coupled to control terminals of the second transistors to form input nodes of the driver circuit.