Abstract:
A coexistence signaling scheme for radio communications is described. In one embodiment, a method for coexistence signaling includes establishing first communications and second communications with separate access points or base stations. The method further includes determining protocol timings of the first and second communications. Based on various communications parameters, protocol timings, and identified interference conditions, the method includes generating one or more priority signals to manage the first and second communications. According to certain aspects, overlapping channel conditions can be avoided while maintaining acceptable communications data throughput.
Abstract:
A circuit includes a first wireless interface circuit that communicates packetized data to a first external device in accordance with a first wireless communication protocol. A second wireless interface circuit communicates packetized data to a second external device in accordance with a second wireless communication protocol. A plurality of signal lines communicate at least four lines of cooperation data between the first wireless interface circuit and the second wireless interface circuit, wherein the cooperation data relates to cooperate transceiving in a common frequency spectrum.
Abstract:
A circuit includes a first wireless interface circuit that communicates packetized data to a first external device in accordance with a first wireless communication protocol. A second wireless interface circuit communicates packetized data to a second external device in accordance with a second wireless communication protocol. A plurality of signal lines communicate at least four lines of cooperation data between the first wireless interface circuit and the second wireless interface circuit, wherein the cooperation data relates to cooperate transceiving in a common frequency spectrum.
Abstract:
A circuit includes a first wireless interface circuit that communicates packetized data to a first external device in accordance with a first wireless communication protocol. A second wireless interface circuit communicates packetized data to a second external device in accordance with a second wireless communication protocol. A plurality of signal lines communicate at least four lines of cooperation data between the first wireless interface circuit and the second wireless interface circuit, wherein the cooperation data relates to cooperate transceiving in a common frequency spectrum.
Abstract:
A coexistence signaling scheme for radio communications is described. In one embodiment, a method for coexistence signaling includes establishing first communications and second communications with separate access points or base stations. The method further includes determining protocol timings of the first and second communications. Based on various communications parameters, protocol timings, and identified interference conditions, the method includes generating one or more priority signals to manage the first and second communications. According to certain aspects, overlapping channel conditions can be avoided while maintaining acceptable communications data throughput.
Abstract:
A circuit includes a first wireless interface circuit that communicates packetized data to a first external device in accordance with a first wireless communication protocol. A second wireless interface circuit communicates packetized data to a second external device in accordance with a second wireless communication protocol. A plurality of signal lines communicate at least four lines of cooperation data between the first wireless interface circuit and the second wireless interface circuit, wherein the cooperation data relates to cooperate transceiving in a common frequency spectrum.
Abstract:
A coexistence signaling scheme for radio communications is described. In one embodiment, a method for coexistence signaling includes establishing first communications and second communications with separate access points or base stations. The method further includes determining protocol timings of the first and second communications. Based on various communications parameters, protocol timings, and identified interference conditions, the method includes generating one or more priority signals to manage the first and second communications. According to certain aspects, overlapping channel conditions can be avoided while maintaining acceptable communications data throughput.