Abstract:
A method includes directing a probe beam to a target that includes an array of data portions in a data storage medium arranged so that a beam area of the probe beam extends across a plurality of adjacent data portions, the array including a data portion subset with each data portion of the subset responsive to the probe beam to produce a response illumination, receiving the response illumination at a detector, and determining data values corresponding to the plurality of adjacent data portions based on the received response illumination. Apparatus and systems are also disclosed.
Abstract:
A method includes directing a probe beam to a target that includes an array of data portions in a data storage medium arranged so that a beam area of the probe beam extends across a plurality of adjacent data portions, the array including a data portion subset with each data portion of the subset responsive to the probe beam to produce a response illumination, receiving the response illumination at a detector, and determining data values corresponding to the plurality of adjacent data portions based on the received response illumination. Apparatus and systems are also disclosed.
Abstract:
A membrane device and processes for fabrication and for using are disclosed. The membrane device may include a number of porous metal membranes that provide a high membrane surface area per unit volume. The membrane device provides various operation modes that enhance throughput and selectivity for mass exchange, mass transfer, separation, and/or filtration applications between feed flow streams and permeate flow streams.
Abstract:
Zeolite membrane sheets for separation of mixtures containing water are provided, as well as methods for making the same. Thin, but robust, zeolite membrane sheets having an inter-grown zeolite crystal film directly on a thin, less than 200 micron thick, porous support sheet free of any surface pores with a size above 10 microns. The zeolite membrane film thickness is less than about 10 microns above the support surface and less than about 5 microns below the support surface. Methods of preparing the membrane are disclosed which include coating of the support sheet surface with a seed coating solution containing the parent zeolite crystals with mean particle sizes from about 0.5 to 2.0 microns at loading of 0.05-0.5 mg/cm2 and subsequent growth of the seeded sheet in a growth reactor loaded with a growth solution over a temperature range of about 45° C. to about 120° C.
Abstract translation:提供了用于分离含水混合物的沸石膜片及其制备方法。 薄而坚固的沸石膜片,其具有直接在薄的,小于200微米厚的多孔支撑片上的生长中的沸石晶体膜,其不具有大于10微米的任何表面孔。 沸石膜膜厚度小于支撑表面上方约10微米,小于支撑表面下方约5微米。 公开了制备膜的方法,其包括用0.05-0.5mg / cm 2的负载下含有平均粒径为约0.5至2.0微米的母沸石晶体的种子包衣溶液涂覆支撑片表面,随后种植的 在装载有生长溶液的生长反应器中在约45℃至约120℃的温度范围内
Abstract:
A method includes directing a probe beam to a target that includes an array of data portions in a data storage medium arranged so that a beam area of the probe beam extends across a plurality of adjacent data portions, the array including a data portion subset with each data portion of the subset responsive to the probe beam to produce a response illumination, receiving the response illumination at a detector, and determining data values corresponding to the plurality of adjacent data portions based on the received response illumination. Apparatus and systems are also disclosed.
Abstract:
A method includes directing a probe beam to a target that includes an array of data portions in a data storage medium arranged so that a beam area of the probe beam extends across a plurality of adjacent data portions, the array including a data portion subset with each data portion of the subset responsive to the probe beam to produce a response illumination, receiving the response illumination at a detector, and determining data values corresponding to the plurality of adjacent data portions based on the received response illumination. Apparatus and systems are also disclosed.