Abstract:
Self-sustained, safe, stable and scalable microbial consortia (S5MicroCon) are described. The microbial consortia are regulated by photoautotroph-heterotroph interactions and RNA aptamer-based gene circuits. A rapid, high-throughput method for engineering RNA aptamer-based gene circuits (e.g. riboswitches) is also described.
Abstract:
Self-sustained, safe, stable and scalable microbial consortia (S5MicroCon) are described. The microbial consortia are regulated by photoautotroph-heterotroph interactions and RNA aptamer-based gene circuits. A rapid, high-throughput method for engineering RNA aptamer-based gene circuits (e.g. riboswitches) is also described.
Abstract:
Methods and systems for identifying binding sites in macromolecules using small molecule mimics of naturally occurring molecules is disclosed. A reactive probe is provided that mimics small molecule cofactors. A target macromolecule is irreversibly bound to the probe in vivo to selectively pull down or precipitate probe-bound macromolecules. The macromolecules may be, but are not limited to, DNA, RNA, and proteins.
Abstract:
Methods and systems for identifying binding sites in macromolecules using small molecule mimics of naturally occurring molecules is disclosed. A reactive probe is provided that mimics small molecule cofactors. A target macromolecule is irreversibly bound to the probe in vivo to selectively pull down or precipitate probe-bound macromolecules. The macromolecules may be, but are not limited to, DNA, RNA, and proteins.