摘要:
A user equipment (UE) located in an extended-range area of a neighbor base station cell in a communication network, such as a low-power cell in a heterogeneous network, can inform its serving base station, such as a macro cell overlying the low-power cell, of the UE's capability of canceling interference from other cells' transmissions. That capability information enables the serving cell to decide based on more information whether range extension of the neighbor cell is beneficial for a number of UEs, and can result in more efficient radio resource utilization.
摘要:
Embodiments herein relate to a method in a transceiver (400) for enabling control of interference cancelling in the transceiver (400). The transceiver (400) is in a first decoding mode. The transceiver (400) stores a received signal comprising a data block. The transceiver (400) decodes the received signal using the first decoding mode, thereby obtaining the data block. When an event is triggered, the transceiver (400) retrieves the stored signal. The transceiver (400) decodes the retrieved signal using a second decoding mode, thereby obtaining the data block. The transceiver (400) controls the interference cancelling in the transceiver (400), based on the data block decoded using the first decoding mode and the data block decoded using the second decoding mode.
摘要:
A user equipment (UE) located in an extended-range area of a neighbor base station cell in a communication network, such as a low-power cell in a heterogeneous network, can inform its serving base station, such as a macro cell overlying the low-power cell, of the UE's capability of canceling interference from other cells' transmissions. That capability information enables the serving cell to decide based on more information whether range extension of the neighbor cell is beneficial for a number of UEs, and can result in more efficient radio resource utilization.
摘要:
Embodiments herein relate to a method in a transceiver (400) for enabling control of interference cancelling in the transceiver (400). The transceiver (400) is in a first decoding mode. The transceiver (400) stores a received signal comprising a data block. The transceiver (400) decodes the received signal using the first decoding mode, thereby obtaining the data block. When an event is triggered, the transceiver (400) retrieves the stored signal. The transceiver (400) decodes the retrieved signal using a second decoding mode, thereby obtaining the data block. The transceiver (400) controls the interference cancelling in the transceiver (400), based on the data block decoded using the first decoding mode and the data block decoded using the second decoding mode.
摘要:
In one aspect, the present invention provides methods (400, 900) and apparatuses (22, 26, 40) for detecting that a wireless communication device (40) in a serving cell (24, 27) is experiencing excessive interference variance (68), detecting a transmission pattern (74) of interfering transmissions (46) giving rise to such variance, and correspondingly adjusting scheduling of the device (40) as a function of the detected transmission pattern (74), to at least partly avoid the interfering transmissions (46). An advantageous feature of such operation is that the determination of excessive interference variance (68) and the determination of the transmission pattern (74) associated with that varying interference can be done by a network node (22, 26), e.g., the device's serving base station (22, 26), or by the device (40), without requiring backhaul signaling or other inter-node cooperation in the network (20).
摘要:
In one aspect, the present invention provides methods (400, 900) and apparatuses (22, 26, 40)for detecting that a wireless communication device (40) in a serving cell (24, 27) is experiencing excessive interference variance (68), detecting a transmission pattern (74) of interfering transmissions (46) giving rise to such variance, and correspondingly adjusting scheduling of the device (40) as a function of the detected transmission pattern (74), to at least partly avoid the interfering transmissions (46). An advantageous feature of such operation is that the determination of excessive interference variance (68) and the determination of the transmission pattern (74) associated with that varying interference can be done by a network node (22, 26), e.g., the device's serving base station (22, 26), or by the device (40), without requiring backhaul signaling or other inter-node cooperation in the network (20).
摘要:
A method of decreasing radio link failure in challenging mobility scenarios for a user equipment (UE), device working in a cellular telecommunication network with a base station of each cell is disclosed. The method comprises measuring signal conditions for serving cell and neighbouring cells periodically; and estimating channel variations and comparing the estimate with a threshold value such that, when channel variations are determined to exceed a channel variations threshold, performing an accelerated procedure comprising predicting whether handover is likely to occur in connection with the next scheduled measurement instant based on the signal measurements such that when handover is predicted, the procedure directly proceeds with sending an initial measurement report transmission request. Thereby handover delay can be reduced such that risk of radio link failure is reduced at significantly varying signal conditions. A UE device and a computer program are also disclosed.
摘要:
One aspect of the teachings herein involves the advantageous use of learned statistical information to improve inter-cell interference coordination (ICIC). The network uses historical signal quality measurements collected over time for wireless communication devices operating within its coverage areas to identify those geographical areas where devices generally experience significant levels of patterned interference. In an example case, the network develops a “map” of the geographical areas that are affected by the transmission patterns of neighboring nodes, and it applies the map to ICIC operations, wherein the serving nodes associated with the affected areas incorporate knowledge of the interfering transmission patterns into the ongoing scheduling of users operating in the affected areas.
摘要:
This disclosure teaches a method and apparatus for radio link failure recovery by a User Equipment (UE). The example UE includes one or more controllers that are configured to store cell access information for a target cell that is the target for an impending handover from a serving cell, and for a backup cell that is selected by the UE from among a set of neighbouring cells that includes the target cell. Advantageously, in case the handover to the target cell fails, the one or more controllers are configured to retrieve the cell access information stored for the backup cell and to use that information for re-establishing connection in the backup cell. The UE selects the backup cell, for example, as the neighbouring cell other than the target cell having the strongest signal conditions with respect to the UE.
摘要:
A method of operating a communications network (20) comprising a wireless terminal (30) which communicates with a network node (22) comprises using the wireless terminal (30) to perform measurements relative to plural cells of the network, and then using the wireless terminal (30) or the network node (22) to make a determination regarding an extent of connection of the wireless terminal to a best cell of the network. The method also comprises using the wireless terminal (30) or the network node (22) to select a mobility related parameter for the wireless terminal (30) in accordance with the determination.