Abstract:
Provided herein are a luminogen compound of formula (I) including a AIE luminophore moiety conjugated with a maleimide moiety and a use of the same for detecting thiol groups in biomolecules. Also provided is a dye molecule, a biosensor or a bioprobe comprising the luminogen compound of formula (I) in use for detecting thiol groups in biomolecules. The detection method of the present subject matter not only has high thio-selectivity and sensitivity, but also is rapid, convenient and handy.
Abstract:
A method of detecting the presence or absence of saccharide or saccharide level in a biological or artificial sample comprising contacting the sample with a water-soluble tetraphenylethene-cored probe having multiple functionalities of boronic acid and aggregation induced emission (AIE) characteristics, and detecting fluorescence. A method for detecting pH in a sample solution with a certain pH value comprising contacting the sample solution with a water-soluble tetraphenylethene-cored probe having multiple functionalities of boronic acid and aggregation induced emission (AIE) characteristics, and detecting fluorescence.
Abstract:
A photoactivatable caged compound (TPE-C) with AIE characteristics is designed and synthesized. TPE-C is non-emissive either in solution or in aggregated state, but its luminescence can be induced to emit strong cyan emission in aggregated state by UV irradiation. Such property enables TPE-C to be applied in photo-patterning and anti-counterfeiting related areas.
Abstract:
Pyridine-containing polyenes and their applications as metal ion sensors. These polyenes are practically nonluminescent in the solution state but become highly emissive as nanoparticle suspensions in aqueous solutions or thin films in the solid state, due to aggregation-induced emission (AIE). The nanoaggregates of these compounds can work as “turn-off” fluorescent chemosensors for metal ions and display different fluorescence responses to various metal ions. For example, a characteristic red shift in the emission spectra is observed with a terpyridine-containing luminogen in the presence of Zn2+. However, the terpyridine-containing luminogen displays a magenta color upon selectively binding with Fe2+. This allows easy identification of both Zn2+ and Fe2+ ions in aqueous media. The function of the polyenes can be easily tuned by altering the substituent groups. Due to their AIE properties, these polyenes can be used in aqueous solutions and in solid substrates for metal sensing.
Abstract:
The presently described subject matter is directed to a water-soluble conjugated polyene compound and the derivatives thereof that exhibit aggregation induced emission, as well as any water dispersible, fluorescent, polymeric microparticles, nanoparticles, and/or pharmaceutical composition comprising the water-soluble conjugated polyene compound and/or the derivatives thereof. Also provided are methods of making and using the compound, derivatives and particles of the presently described subject matter. The presently described water-soluble conjugated polyene compound are useful as bioprobes for the detection of biomacromolecules, in the manufacture of sensors, in monitoring and retarding formation of amyloid protein fibril in vitro and in vivo, and in developing anti-cancer drugs.
Abstract:
Provided is a high temperature-resistant metal adhesive containing hyperbranched poly(triazole)s synthesized by in situ azide/alkyne click polymerization. Also provided is a method for preparing the same adhesives by in situ click polymerization of azide and alkyne monomers on metal substrates. The method is optimized to get high adhesive strength at room temperature or elevated temperatures by analyzing the effects of monomer ratio, curing temperature and time, and annealing temperature and time. The hyberbranched poly(triazole)s adhesive has comparable or better temperature resistance compared with known high temperature epoxy metal adhesives, and it is the first high temperature metal adhesive using hyperbranched poly(triazole)s prepared by in situ azide/alkyne click polymerization.