Abstract:
In various embodiments, a circuit arrangement for operating a series circuit of a first and a second low-pressure gas-discharge lamp is provided, which may include an input with a first and a second input connection for application of a supply voltage; an output with a first arrangement, which has a first and a second connection pair for connection of the first lamp, and a second arrangement, which has a first and a second connection pair for connection of the second lamp, wherein a first connection of the second pair of the first arrangement is coupled to a first connection of the first pair of the second arrangement; a resonant circuit; and a capacitive voltage divider, which has a first capacitor, which is coupled in parallel with the first arrangement, and a second capacitor, which is coupled in parallel with the second arrangement.
Abstract:
The invention relates to a method for producing mineral wool, wherein a mineral base material is melted in a cupola furnace having a shaft to hold the base material, the lower section of said shaft being provided with a grate, and beneath said grate there is a combustion chamber. The combustion chamber is heated by one or a plurality of burners, the burner or burners being run on liquid or gaseous fuel and an oxygen-containing gas. The burners are operated such that the length of the flames occurring during combustion of the fuel with the oxygen-containing gas is between 60% and 100% of the combustion chamber diameter.
Abstract:
In various embodiments, a circuit arrangement for operating a series circuit of a first and a second low-pressure gas-discharge lamp is provided, which may include an input with a first and a second input connection for application of a supply voltage; an output with a first arrangement, which has a first and a second connection pair for connection of the first lamp, and a second arrangement, which has a first and a second connection pair for connection of the second lamp, wherein a first connection of the second pair of the first arrangement is coupled to a first connection of the first pair of the second arrangement; a resonant circuit; and a capacitive voltage divider, which has a first capacitor, which is coupled in parallel with the first arrangement, and a second capacitor, which is coupled in parallel with the second arrangement.
Abstract:
The invention relates to a method for producing mineral wool, wherein a mineral base material is melted in a cupola furnace having a shaft to hold the base material, the lower section of said shaft being provided with a grate, and beneath said grate there is a combustion chamber. The combustion chamber is heated by one or a plurality of burners, the burner or burners being run on liquid or gaseous fuel and an oxygen-containing gas. The burners are operated such that the length of the flames occurring during combustion of the fuel with the oxygen-containing gas is between 60% and 100% of the combustion chamber diameter.
Abstract:
Circuit arrangement having a free-running half-bridge inverter for operation of gas discharge lamps. A stop device is used to enable the drive to the half-bridge switches only during an on time. The oscillation frequency of the half-bridge inverter can be adjusted by the duration of the on time. This allows control of the lamp operating variables.
Abstract:
The invention relates to an electronic ballast for discharge lamps LA1, LA2 having preheatable electrodes which has a pump circuit D5/D7, D6/D8 for improving the power factor. In this arrangement, preheating is performed with a converter frequency, raised by comparison with continuous operation, and with the aid of a preheating transformer TR2.
Abstract translation:本发明涉及一种用于具有预热电极的放电灯LA1,LA2的电子镇流器,其具有用于提高功率因数的泵电路D 5 / D 7,D 6 / D 8。 在这种布置中,通过与连续操作相比,借助于预热变压器TR 2,以转换器频率进行预热。
Abstract:
A buck converter for operating at least one LED. In this case, the buck inductor comprises a first buck inductor and a second buck inductor, wherein a charge pump is coupled between the coupling point of the two buck inductors and a supply connection of a control apparatus which is used for actuating a buck switch.
Abstract:
A Buck converter may include an input for connecting a DC voltage source; an output for connecting an LED; and a diode, an inductor and a main switch; wherein the diode and the main switch are coupled in series, wherein the inductor is coupled between the connecting point for the diode and the main switch, and a first output connection, wherein the converter further includes: a first auxiliary switch supplied with a first voltage; and a second auxiliary switch supplied with a second voltage, wherein the first auxiliary switch and the second auxiliary switch are coupled to the main switch such that the first voltage stipulates the switch-off time for the main switch and the second voltage stipulates the switch-on time for the main switch.
Abstract:
A buck converter for providing a current for an LED includes an input for connection of a DC voltage source; an output for connection of the LED; and a Buck diode, a Buck inductor and a Buck main switch which has a control electrode, a working electrode and a reference electrode. The diode and the main switch are coupled in series, wherein the connecting point between the diode and the main switch is coupled to the second output connection. The converter includes: an auxiliary winding which is coupled to the inductor and has a connection which is coupled to the second input connection and a connection which is coupled to the control electrode of the switch, wherein the auxiliary winding is coupled to the inductor such that, when current is flowing through the switch, a current is provided through the auxiliary winding to the control electrode of the switch.