Abstract:
Composite moulded rubber or plastic articles, each comprising two distinct parts separately formed by injection moulding of different materials and subsequently joined together by vulcanising or the like, are produced in a dual purpose apparatus that simultaneously moulds two separate parts and bonds together two previously moulded parts.
Abstract:
Composite moulded rubber or plastic articles, each comprising two distinct parts separately formed by injection moulding of different materials and subsequently joined together by vulcanizing or the like, are produced in a dual purpose apparatus that simultaneously moulds two separate parts and bonds together two previously moulded parts.
Abstract:
The invention relates to an elastic suspension for attaching dynamically stressed function parts, consisting of a metal retaining clip attached to a base plate, and a receptacle case that is positioned by way of links of a rubber-elastic material in a swinging manner within a section formed by the base plate and the retaining clip. The retaining clip consists of an elastic metal band that permits a level deformation of the retaining clip. The retaining clip of the elastic metal band no longer functions exclusively as a loss protector, but rather absorbs an essential part of the dynamic stresses itself. The deformation in the horizontal axis, i.e. the axis that is parallel to the base plate, is adaptable to the respective requirements by a suitable selection of elasticity and thickness of the metal band, as well as the starting geometry of the retaining clip in accordance with the elasticity and geometry of the rubber-elastic links, which significantly reduces the displacement paths that must be absorbed by the rubber-elastic links. The links thus may be designed shorter, so that the overall dimensions of the suspension can be reduced. The elasticity and geometry of the retaining clip are designed in such a way that up to 90% of the displacement path of the receptacle cases are absorbed by the elastic retaining clip. Because the tensile and pressure stresses to be absorbed are correspondingly reduced, the expensive silicon caoutchouc can be replaced with cheaper material such as HPMD.