摘要:
A biosorbable oxygen-delivery wound treatment device that includes a biosorbable matrix for delivering oxygen. The biosorbable matrix includes a water swellable, cross-linked biosorbable polymer network. A plurality of gas-permeable, elastic, closed cells is defined by the cross-linked biosorbable polymer network. According to the invention, these closed cells may be produced from a reaction between a catalyst and a second reactant. Deliverable oxygen is contained within the elastic closed cells such that when the device is used to treat a wound, oxygen is delivered from the closed cells. A process for making a biosorbable oxygen-delivery wound treatment device that includes a biosorbable matrix for delivering oxygen as well as a method of using an oxygen-delivery wound treatment device is disclosed.
摘要:
A biosorbable oxygen-delivery wound treatment device that includes a biosorbable matrix for delivering oxygen. The biosorbable matrix includes a water swellable, cross-linked biosorbable polymer network. A plurality of gas-permeable, elastic, closed cells is defined by the cross-linked biosorbable polymer network. According to the invention, these closed cells may be produced from a reaction between a catalyst and a second reactant. Deliverable oxygen is contained within the elastic closed cells such that when the device is used to treat a wound, oxygen is delivered from the closed cells. A process for making a biosorbable oxygen-delivery wound treatment device that includes a biosorbable matrix for delivering oxygen as well as a method of using an oxygen-delivery wound treatment device is disclosed.
摘要:
There is provided on-demand, oxygen generating topical compositions having a built-in indicator specifically to indicate a color change upon the complete mixing of the oxygen precursor and catalyst. The first part of the composition contains a carrier and manganese dioxide (MnO2) nanoparticles. The second part of the composition comprises the oxygen precursor; hydrogen peroxide. When the two parts, one with manganese dioxide nanoparticles and exhibiting a characteristic color, (e.g. yellow brown) and the second part with hydrogen peroxide are mixed together, the color imparted by the manganese dioxide nanoparticles essentially disappears and the final composition (enriched with oxygen) either appears colorless or takes on the original color of the catalyst. Thus, the manganese dioxide catalyst nanoparticles themselves serve as the colorimetric indicator of peroxide decomposition to oxygen, precluding the need for an external colorant. Manganese dioxide particles that are not nanoparticles fail to exhibit this color changing phenomenon.
摘要:
There is provided on-demand, oxygen generating topical compositions having a built-in indicator specifically to indicate a color change upon the complete mixing of the oxygen precursor and catalyst. The first part of the composition contains a carrier and manganese dioxide (MnO2) nanoparticles. The second part of the composition comprises the oxygen precursor; hydrogen peroxide. When the two parts, one with manganese dioxide nanoparticles and exhibiting a characteristic color, (e.g. yellow brown) and the second part with hydrogen peroxide are mixed together, the color imparted by the manganese dioxide nanoparticles essentially disappears and the final composition (enriched with oxygen) either appears colorless or takes on the original color of the catalyst. Thus, the manganese dioxide catalyst nanoparticles themselves serve as the colorimetric indicator of peroxide decomposition to oxygen, precluding the need for an external colorant. Manganese dioxide particles that are not nanoparticles fail to exhibit this color changing phenomenon.
摘要:
A method of producing silver nanofilaments that is relatively fast and may be carried out at normal room temperatures (e.g., from about 10° C. to about 25° C.). The method of producing silver nanofilaments includes the steps of adding a solid silver salt to liquid ether to form a mixture, adding a liquid fatty acid to the mixture, adding a reducing agent to the mixture, allowing the ingredients to react, and recovering silver nanofilaments.
摘要:
A method of producing silver nanofilaments that is relatively fast and may be carried out at normal room temperatures (e.g., from about 10° C. to about 25° C.). The method of producing silver nanofilaments includes the steps of adding a solid silver salt to liquid ether to form a mixture, adding a liquid fatty acid to the mixture, adding a reducing agent to the mixture, allowing the ingredients to react, and recovering silver nanofilaments.