摘要:
A system for exchanging energy wirelessly includes an array of at least three objects, wherein the objects have similar resonant frequencies, wherein each object is electromagnetic (EM) and non-radiative and generates an EM near-field in response to receiving the energy. Each object is electrically isolated from the other objects and arranged at a distance from all other objects, such that upon receiving the energy, the object is strongly coupled to at least one other object via a resonant coupling of evanescent waves. An energy driver provides the energy at the resonant frequency to at least one object in the array, such that, during an operation of the system, the energy is distributed from the at least one object to all other objects in the array via the resonant coupling of the evanescent waves.
摘要:
A system for exchanging energy wirelessly includes an array of objects, wherein each object is electromagnetic (EM) and non-radiative and generates an EM near-field in response to receiving the energy. Each object in the array is electrically isolated from the other objects and arranged at a distance from all other objects. An energy driver provides the energy to the array of objects. A receiver, at a relative position with respect to the array receives the energy via resonant coupling of evanescent waves. The system can tunes characteristics of the EM near-field depending on a relative position of the receiver with respect to the array. The tuning can affect frequency, phase and amplitude of the energy field.
摘要:
A system that transfers energy wirelessly includes a transmitter of the energy and a receiver of the energy. A housing made of a material that approximates properties of a perfect magnetic conductor. The housing is arranged to direct a magnetic field from the transmitter to the receiver to improve an efficiency of the energy transfer from the transmitter to the receiver.
摘要:
Embodiments of the invention disclose a system configured to exchange energy wirelessly. The system includes a structure configured to exchange the energy wirelessly via a coupling of evanescent waves, wherein the structure is electromagnetic (EM) and non-radiative, and wherein the structure generates an EM near-field in response to receiving the energy; and a negative index material (NIM) arranged within the EM near-field such that the coupling is enhanced.
摘要:
Embodiments of the invention disclose a system configured to exchange energy wirelessly. The system includes a structure configured to exchange the energy wirelessly via a coupling of evanescent waves, wherein the structure is electromagnetic (EM) and non-radiative, and wherein the structure generates an EM near-field in response to receiving the energy; and an anisotropic metamaterial arranged within the EM near-field such that the coupling is enhanced.
摘要:
Embodiments of the invention disclose a system configured to exchange energy wirelessly. The system includes a structure configured to exchange the energy wirelessly via a coupling of evanescent waves, wherein the structure is electromagnetic (EM) and non-radiative, and wherein the structure generates an EM near-field in response to receiving the energy; and a metamaterial arranged within the EM near-field such that the coupling is enhanced.
摘要:
A system for exchanging energy wirelessly comprises an array of at least three objects having a resonant frequency, each object is electromagnetic (EM) and non-radiative, and generates an EM near-field in response to receiving the energy, wherein each object in the array is arranged at a distance from all other objects in the array, such that upon receiving the energy the object is strongly coupled to at least one other object in the array via a resonant coupling of evanescent waves; and an energy driver for providing the energy at the resonant frequency to at least one object in the array, such that, during an operation of the system, the energy is distributed from the object to all other objects in the array.
摘要:
A spiral resonator is analyzed by modeling a set of loops of the spiral resonator with a model of a circuit including a set of units, wherein each unit includes a resistor and an inductor to model one loop of the spiral resonator. Values of the resistor and the inductor of each unit are based on properties of a corresponding loop. Electrical connection of the loops is modeled by electrically connecting the units in a corresponding order of the loops. A capacitive coupling in the spiral resonator is modeled by connecting adjacent units with at least one capacitor having a value based on the capacitive coupling between two corresponding adjacent loops. An inductive coupling in the spiral resonator is modeled based on inductive coupling between pairs of loops. The operation of the spiral resonator is simulated with the model of the circuit.
摘要:
A system for exchanging energy wirelessly comprises an array of at least three objects having a resonant frequency, each object is electromagnetic (EM) and non-radiative, and generates an EM near-field in response to receiving the energy, wherein each object in the array is arranged at a distance from all other objects in the array, such that upon receiving the energy the object is strongly coupled to at least one other object in the array via a resonant coupling of evanescent waves; and an energy driver for providing the energy at the resonant frequency to at least one object in the array, such that, during an operation of the system, the energy is distributed from the object to all other objects in the array.
摘要:
Embodiments of the invention disclose a system configured to exchange energy wirelessly. The system includes a structure configured to exchange the energy wirelessly via a coupling of evanescent waves, wherein the structure is electromagnetic (EM) and non-radiative, and wherein the structure generates an EM near-field in response to receiving the energy; and a negative index material (NIM) arranged within the EM near-field such that the coupling is enhanced.