Abstract:
Systems and methods for maintaining and updating file system shadows by a synchronization client of a cloud-based platform. In some embodiments, an executor of the synchronization client can execute an action on an item in the local file system which changes the state of the item from an old state to a new state. The synchronization client updates the file system shadows with the new state of the item via an interface to facilitate generation of a synchronization event for the change to the item, that would otherwise go undetected if the change to the item was immediately reversed. In some embodiments, methods for providing shadow consistency and enhancing concurrent access to shadows are implemented by the synchronization client in maintaining and updating the file system shadows.
Abstract:
Systems and methods for maintaining and updating file system shadows by a synchronization client of a cloud-based platform. In some embodiments, an executor of the synchronization client can execute an action on an item in the local file system which changes the state of the item from an old state to a new state. The synchronization client updates the file system shadows with the new state of the item via an interface to facilitate generation of a synchronization event for the change to the item, that would otherwise go undetected if the change to the item was immediately reversed. In some embodiments, methods for providing shadow consistency and enhancing concurrent access to shadows are implemented by the synchronization client in maintaining and updating the file system shadows.
Abstract:
Techniques are disclosed for using a third-party application to access or edit a file within a cloud-based environment within a cloud-based platform or environment. In one embodiment, a method includes, in response to a request to access the content in the cloud-based environment, providing the third-party application with a login view to verify an identity of a user. The login view is generated from a server hosting the environment. The method further includes, upon the verification of the user's identity, providing the requested content to the third-party application.
Abstract:
Techniques for monitoring local and/or remote file systems by a synchronization component (e.g., client/server) of a cloud-based platform are disclosed. In some embodiments, a method of building synchronization events by a synchronization component (e.g., a synchronization server/client) includes obtaining a set of items that have been changed and their new states and retrieving last known states of the set of items that are stored in a reference snapshot inside a filesystem scanner. The method further includes generating differences between the new states and the last known states of the set of items as item changes and utilizing information provided by the item changes to translate the item changes into synchronization events for execution on the opposing file system. A method of handling failed synchronization events by a synchronization component of the cloud-based platform by collapsing a subsequent event with the failed synchronization event is also disclosed.
Abstract:
Techniques are disclosed for file system monitoring in a system which incrementally updates clients with what occurred in a cloud-enabled platform. In one embodiment, a method comprises, in response to an event which represents that a modification to an item has taken place on the cloud-based platform, identifying whether execution of the event is to violate any local file system rule. The method further comprises, if the execution of the event is to violate any local file system rule, buffering the event until a subsequent event arrives. The method further comprises identifying whether execution of an aggregate of the events is to violate any local file system rule.
Abstract:
Systems and methods to automatically upgrade, or update a synchronization client to a cloud-based platform are provided. The automatic upgrading can be provided to a personal or an enterprise-level synchronization client. The synchronization client is implemented in a manner that is silent, secure and fault tolerant. In one embodiment, the disclosed technology includes an executable process to download the update, verify the contents, and apply the update. The contents can be verified by checking the certificate on any binary. The systems and methods further include identification and handling of items to be ignored by the synchronization client for synchronization with a cloud-based platform. In some embodiments, files and folders which typically should not be synchronized are identified and removed from the synchronization process in an effective manner.
Abstract:
Techniques for monitoring local and/or remote file systems by a synchronization component (e.g., client/server) of a cloud-based platform are disclosed. In some embodiments, a method of building synchronization events by a synchronization component (e.g., a synchronization server/client) includes obtaining a set of items that have been changed and their new states and retrieving last known states of the set of items that are stored in a reference snapshot inside a filesystem scanner. The method further includes generating differences between the new states and the last known states of the set of items as item changes and utilizing information provided by the item changes to translate the item changes into synchronization events for execution on the opposing file system. A method of handling failed synchronization events by a synchronization component of the cloud-based platform by collapsing a subsequent event with the failed synchronization event is also disclosed.
Abstract:
Systems and methods for maintaining and updating file system shadows by a synchronization client of a cloud-based platform. In some embodiments, an executor of the synchronization client can execute an action on an item in the local file system which changes the state of the item from an old state to a new state. The synchronization client updates the file system shadows with the new state of the item via an interface to facilitate generation of a synchronization event for the change to the item, that would otherwise go undetected if the change to the item was immediately reversed. In some embodiments, methods for providing shadow consistency and enhancing concurrent access to shadows are implemented by the synchronization client in maintaining and updating the file system shadows.
Abstract:
Techniques for monitoring local and/or remote file systems by a synchronization component (e.g., client/server) of a cloud-based platform are disclosed. In some embodiments, a method of building synchronization events by a synchronization component (e.g., a synchronization server/client) includes obtaining a set of items that have been changed and their new states and retrieving last known states of the set of items that are stored in a reference snapshot inside a filesystem scanner. The method further includes generating differences between the new states and the last known states of the set of items as item changes and utilizing information provided by the item changes to translate the item changes into synchronization events for execution on the opposing file system. A method of handling failed synchronization events by a synchronization component of the cloud-based platform by collapsing a subsequent event with the failed synchronization event is also disclosed.
Abstract:
Techniques for monitoring local and/or remote file systems by a synchronization component (e.g., client/server) of a cloud-based platform are disclosed. In some embodiments, a method of building synchronization events by a synchronization component (e.g., a synchronization server/client) includes obtaining a set of items that have been changed and their new states and retrieving last known states of the set of items that are stored in a reference snapshot inside a filesystem scanner. The method further includes generating differences between the new states and the last known states of the set of items as item changes and utilizing information provided by the item changes to translate the item changes into synchronization events for execution on the opposing file system. A method of handling failed synchronization events by a synchronization component of the cloud-based platform by collapsing a subsequent event with the failed synchronization event is also disclosed.