摘要:
An RF (e.g., GNSS) interference mitigation system and method uses a switchable bank of filters for selectively blocking signals in predetermined bandwidths based on detecting strong, interfering signals with an interference detection circuit including a sniffer antenna. A low-strength RF (e.g., GNSS) system can be combined with a spectrally-close high-strength, telecommunications receiver system for cooperative control. Alternatively, an RF receiver can detect tones, changes in DC bias or level changes to activate a filter selection switch.
摘要:
A method and system of synchronizing multiple tracking devices in a geo-location receiver system comprising: receiving a first plurality of geo-location signals with a first tracking device; and receiving a second plurality of geo-location signals with a second tracking device. The method also includes: enabling the first tracking device as either a master tracking device or a master-with-mark tracking device; enabling the second tracking device to operate as a slave tracking device; the master tracking device generates and transmits a timing signal to the slave tracking device; and the master-with-mark tracking device is configured to receive an external input for synchronization and generates and transmits a timing signal to the slave tracking device. The method also includes acquiring the first plurality of geo-location signals and the second plurality of geo-location signals at a substantially simultaneous instant of time.
摘要:
A multi-frequency down converter includes first and second signal paths. A common local oscillator/synthesizer drives both of the signal paths. Exemplary applications include GNSS systems operating across superbands. The down converter is adapted for use in a GNSS receiver system.
摘要:
A multi-frequency down converter includes first and second signal paths. A common local oscillator/synthesizer drives both of the signal paths. Exemplary applications include GNSS systems operating across superbands. The down converter is adapted for use in a GNSS receiver system.
摘要:
A multi-frequency down converter includes first and second signal paths. A common local oscillator/synthesizer drives both of the signal paths. Exemplary applications include GNSS systems operating across superbands. The down converter is adapted for use in a GNSS receiver system.
摘要:
A GNSS system includes a receiver connected to an external mass storage device. Applications for the system, including GNSS data processing methods are also disclosed. The external storage device can comprise a flash (thumb) drive, which can be connected to the receiver via a USB interconnection.
摘要:
A GNSS system includes a receiver connected to an external mass storage device. Applications for the system, including GNSS data processing methods are also disclosed. The external storage device can comprise a flash (thumb) drive, which can be connected to the receiver via a USB interconnection.
摘要:
A GNSS system includes a receiver connected to an external mass storage device. Applications for the system, including GNSS data processing methods are also disclosed. The external storage device can comprise a flash (thumb) drive, which can be connected to the receiver via a USB interconnection.
摘要:
A GNSS system includes a receiver connected to an external mass storage device. Applications for the system, including GNSS data processing methods are also disclosed. The external storage device can comprise a flash (thumb) drive, which can be connected to the receiver via a USB interconnection.
摘要:
A constrained-envelope digital-communications transmitter circuit (22) in which a binary data source (32) provides an input signal stream (34), a phase mapper (44) maps the input signal stream (34) into a quadrature phase-point signal stream (50) having a predetermined number of symbols per unit baud interval (64) and defining a phase point (54) in a phase-point constellation (46), a pulse-spreading filter (76) filters the phase-point signal stream (50) into a filtered signal stream (74), a constrained-envelope generator (106) generates a constrained-bandwidth error signal stream (108) from the filtered signal stream (74), a delay element (138) delays the filtered signal stream (74) into a delayed signal stream (140) synchronized with the constrained-bandwidth error signal stream (108), a complex summing circuit (110) sums the delayed signal stream (140) and the constrained-bandwidth error signal stream (108) into a constrained-envelope signal stream (112), and a substantially linear amplifier (146) amplifies the constrained-envelope signal stream (112) and transmits it as a radio-frequency broadcast signal (26).