摘要:
A method and system of synchronizing multiple tracking devices in a geo-location receiver system comprising: receiving a first plurality of geo-location signals with a first tracking device; and receiving a second plurality of geo-location signals with a second tracking device. The method also includes: enabling the first tracking device as either a master tracking device or a master-with-mark tracking device; enabling the second tracking device to operate as a slave tracking device; the master tracking device generates and transmits a timing signal to the slave tracking device; and the master-with-mark tracking device is configured to receive an external input for synchronization and generates and transmits a timing signal to the slave tracking device. The method also includes acquiring the first plurality of geo-location signals and the second plurality of geo-location signals at a substantially simultaneous instant of time.
摘要:
A GNSS system includes a receiver connected to an external mass storage device. Applications for the system, including GNSS data processing methods are also disclosed. The external storage device can comprise a flash (thumb) drive, which can be connected to the receiver via a USB interconnection.
摘要:
A GNSS system includes a receiver connected to an external mass storage device. Applications for the system, including GNSS data processing methods are also disclosed. The external storage device can comprise a flash (thumb) drive, which can be connected to the receiver via a USB interconnection.
摘要:
A GNSS system includes a receiver connected to an external mass storage device. Applications for the system, including GNSS data processing methods are also disclosed. The external storage device can comprise a flash (thumb) drive, which can be connected to the receiver via a USB interconnection.
摘要:
A GNSS system includes a receiver connected to an external mass storage device. Applications for the system, including GNSS data processing methods are also disclosed. The external storage device can comprise a flash (thumb) drive, which can be connected to the receiver via a USB interconnection.
摘要:
An RF (e.g., GNSS) interference mitigation system and method uses a switchable bank of filters for selectively blocking signals in predetermined bandwidths based on detecting strong, interfering signals with an interference detection circuit including a sniffer antenna. A low-strength RF (e.g., GNSS) system can be combined with a spectrally-close high-strength, telecommunications receiver system for cooperative control. Alternatively, an RF receiver can detect tones, changes in DC bias or level changes to activate a filter selection switch.
摘要:
A method for locating GNSS-defined points, distances, directional attitudes and closed geometric shapes includes the steps of providing a base with a base GNSS antenna and providing a rover with a rover GNSS antenna and receiver. The receiver is connected to the rover GNSS antenna and is connected to the base GNSS antenna by an RF cable. The receiver thereby simultaneously processes signals received at the antennas. The method includes determining a vector directional arrow from the differential positions of the antennas and calculating a distance between the antennas, which can be sequentially chained together for determining a cumulative distance in a “digital tape measure” mode of operation. A localized RTK surveying method uses the rover antenna for determining relative or absolute point locations. A system includes a base with an antenna, a rover with an antenna and a receiver, with the receiver being connected to the antennas. A processor is provided for computing positions, directional vectors, areas and other related tasks.
摘要:
A global navigation satellite sensor system (GNSS) and gyroscope control system for vehicle steering control comprising a GNSS receiver and antennas at a fixed spacing to determine a vehicle position, velocity and at least one of a heading angle, a pitch angle and a roll angle based on carrier phase position differences. A vehicle control method includes the steps of computing a position and a heading for the vehicle using GNSS positioning and a rate gyro for determining vehicle attitude, which is used for generating a steering command.
摘要:
A global navigation satellite sensor system (GNSS) and gyroscope control system for vehicle steering control comprising a GNSS receiver and antennas at a fixed spacing to determine a vehicle position, velocity and at least one of a heading angle, a pitch angle and a roll angle based on carrier phase position differences. The roll angle facilitates correction of the lateral motion induced position errors resultant from motion of the antennae as the vehicle moves based on an offset to ground and the roll angle. The system also includes a control system configured to receive the vehicle position, heading, and at least one of roll and pitch, and configured to generate a steering command to a vehicle steering system. The system includes gyroscopes for determining system attitude change with respect to multiple axes for integrating with GNSS-derived positioning information to determine vehicle position, velocity, rate-of-turn, attitude and other operating characteristics. A vehicle control method includes the steps of computing a position and a heading for the vehicle using GNSS positioning and a rate gyro for determining vehicle attitude, which is used for generating a steering command. Alternative aspects include multiple-antenna GNSS guidance methods for high-dynamic roll compensation, real-time kinematic (RTK) using single-frequency (L1) receivers, fixed and moving baselines between antennas, multi-position GNSS tail guidance (“breadcrumb following”) for crosstrack error correction and guiding multiple vehicles and pieces of equipment relative to each other.
摘要:
A method of measuring phase of a pseudorandom (PN) sequence of chips, the method includes: generating a reference model exhibiting a reference phase, the reference phase adjustable to facilitate alignment with the phase of the pseudorandom sequence; establishing a plurality of pulsed-windows over which a plurality of samples of the pseudorandom sequence are collected for a selected accumulation interval; and accumulating the plurality of samples for each pulsed-window of the plurality of pulsed windows to form a plurality of accumulated sums. The method also includes: compensating each accumulated sum to form at least one compensated sum, if a number of level transitions and non-transitions of the pseudorandom sequence is not equal; and combining the compensated sum to determine a phase error from the plurality of compensated sums, the phase error corresponding to a phase difference between the reference phase and the phase of the pseudorandom sequence.