摘要:
A constrained-envelope digital-communications transmitter circuit (22) in which a binary data source (32) provides an input signal stream (34), a phase mapper (44) maps the input signal stream (34) into a quadrature phase-point signal stream (50) having a predetermined number of symbols per unit baud interval (64) and defining a phase point (54) in a phase-point constellation (46), a pulse-spreading filter (76) filters the phase-point signal stream (50) into a filtered signal stream (74), a constrained-envelope generator (106) generates a constrained-bandwidth error signal stream (108) from the filtered signal stream (74), a delay element (138) delays the filtered signal stream (74) into a delayed signal stream (140) synchronized with the constrained-bandwidth error signal stream (108), a complex summing circuit (110) sums the delayed signal stream (140) and the constrained-bandwidth error signal stream (108) into a constrained-envelope signal stream (112), and a substantially linear amplifier (146) amplifies the constrained-envelope signal stream (112) and transmits it as a radio-frequency broadcast signal (26).
摘要:
A constrained-envelope digital-communications transmitter circuit (22) includes a binary data source (32) that provides an input signal stream (34) to a modulator (77,77′). The modulator (77,77′) includes a pulse-spreading filter (76) that filters a phase-point signal stream (50) or a composite signal stream (168) into a modulated signal (74). A constrained-envelope generator (106) generates a constrained-bandwidth error signal stream (108) from the modulated signal (74), and a delay element (138) delays the modulated signal (74) into a delayed modulated signal (140) synchronized with the constrained-bandwidth error signal stream (108). A complex summing circuit (110) sums the delayed modulated signal (140) and the constrained-bandwidth error signal stream (108) into an altered modulated signal (112), and a substantially linear amplifier (146) amplifies the altered modulated signal (112) and transmits it as a radio-frequency broadcast signal (26).
摘要:
A constrained-envelope digital-communications transmitter circuit (22) in which a binary data source (32) provides an input signal stream (34), a phase mapper (44) maps the input signal stream (34) into a quadrature phase-point signal stream (50) having a predetermined number of symbols per unit baud interval (64) and defining a phase point (54) in a phase-point constellation (46), a pulse-spreading filter (76) filters the phase-point signal stream (50) into a filtered signal stream (74), a constrained-envelope generator (106) generates a constrained-bandwidth error signal stream (108) from the filtered signal stream (74), a delay element (138) delays the filtered signal stream (74) into a delayed signal stream (140) synchronized with the constrained-bandwidth error signal stream (108), a complex summing circuit (110) sums the delayed signal stream (140) and the constrained-bandwidth error signal stream (108) into a constrained-envelope signal stream (112), and a substantially linear amplifier (146) amplifies the constrained-envelope signal stream (112) and transmits it as a radio-frequency broadcast signal (26).
摘要:
A constrained-envelope digital-communications transmitter circuit (22) in which a binary data source (32) provides an input signal stream (34), a phase mapper (44) maps the input signal stream (34) into a quadrature phase-point signal stream (50) having a predetermined number of symbols per unit baud interval (64) and defining a phase point (54) in a phase-point constellation (46), a pulse-spreading filter (76) filters the phase-point signal stream (50) into a filtered signal stream (74), a constrained-envelope generator (106) generates a constrained-bandwidth error signal stream (108) from the filtered signal stream (74), a delay element (138) delays the filtered signal stream (74) into a delayed signal stream (140) synchronized with the constrained-bandwidth error signal stream (108), a complex summing circuit (110) sums the delayed signal stream (140) and the constrained-bandwidth error signal stream (108) into a constrained-envelope signal stream (112), and a substantially linear amplifier (146) amplifies the constrained-envelope signal stream (112) and transmits it as a radio-frequency broadcast signal (26).
摘要:
An IC modulation processor (28) may be configured to operate in a single chip mode to accommodate baud rates up to a maximum clock rate for the processor (28) and in a dual chip mode to accommodate baud rates in excess of the maximum clock rate. The IC modulation processor (28) performs digital processing on a communication signal which conveys an input data stream (22). A pulse shaping filter (54-57) is provided following a phase mapper (50). The pulse shaping filter (54-57) is implemented as a pair of half-filters. Pulse shaping is distributed between two IC modulation processors (28) in the dual chip mode. An interpolator (86) and linearizer (106) follow the pulse shaping filters (54-57).
摘要:
A digital communication receiver (10) takes one complex sample (20) of a baseband analog signal (12) per symbol. A rectangular to polar converter (26) separates phase attributes of the complex samples from magnitude attributes. A phase processor (28) identifies clock adjustment opportunities which occur when relatively large phase changes take place between consecutive symbols. A magnitude processor (32) influences symbol timing only during clock adjustment opportunities. The magnitude processor (32) advances symbol timing in a phase locked loop when decreasing magnitude changes are detected during clock adjustment opportunities and retards symbol timing when increasing magnitude changes are detected during clock adjustment opportunities. An interpolator (66) may be used to estimate magnitude values between samples so that magnitude change is determined between sampled magnitude values and estimated magnitude values.
摘要:
A time division multiple access digital communications system (12) is provided. The system (12) has a base station (14) configured to generate a receive baud clock (86) and has a receiver (18) and a transmitter (20). The system also has a subscriber unit (16) configured to generate a transmit baud clock (50), and has a transmitter (28) and a receiver (26). The subscriber unit transmitter (28) is configured to transmit a reverse channel signal (54) that incorporates the transmit baud clock (50) as a component thereof. The base station receiver (18) is configured to receive the reverse channel signal (54) from the subscriber unit (16) and produce a phase-error signal (&mgr;′) in response to a phase difference between the transmit baud clock (50) and the receive baud clock (86). The base station transmitter (20) is configured to transmit the phase-error signal (&mgr;′) to the subscriber unit receiver (26). The subscriber unit transmitter (28) contains an interpolator (122) configured to adjust the phase of the transmit baud clock (50) in response to the phase-error signal.
摘要:
An IC modulation processor (28) may be configured to operate in a single chip mode to accommodate baud rates up to a maximum clock rate for the processor (28) and in a dual chip mode to accommodate baud rates in excess of the maximum clock rate. The IC modulation processor (28) performs digital processing on a communication signal which conveys an input data stream (22). A pulse shaping filter (54-57) is provided following a phase mapper (50). The pulse shaping filter (54-57) is implemented as a pair of half-filters. Pulse shaping is distributed between two IC modulation processors (28) in the dual chip mode. An interpolator (86) and linearizer (106) follow the pulse shaping filters (54-57).
摘要:
Symbols (18) of a burst (12) are sub-divided into symbol sections (20). Each symbol section (20) is sampled and converted into polar coordinates. A buffer bank (38) selectably delays the samples and replays a preamble (14). A demod bank (40) includes a coherent demod (58) and several differential demods (60). Each differential demod (60) processes its own stream of symbol sections (20). The differential demods (60) feed a preamble detector (66) and a symbol synchronization circuit (62). The symbol synchronization circuit (62) identifies the symbol section (20) which yields the smallest magnitude of frequency errors. This symbol section (20) is processed by the coherent demod (58) to acquire carrier phase and recover data. The coherent demod (58) is implemented in the phase domain so that only oscillation signal phase data need be generated in phase locked loops. Two phase locked loops (110, 112) operate in parallel but with initial reference phase offsets so that at least one of the two loops will not experience hang-up.
摘要:
A digital communication receiver (10) includes a magnitude-based symbol synchronizer (38) which separates complex phase attributes from magnitude attributes. The phase attributes are processed by a phase processor (78) which identifies clock adjustment opportunities. The magnitude attributes are processed by a magnitude processor (76) that generates a phase error estimate signal (82), which in turn drives a clock generator (24) in a phase locked loop (54) to achieve symbol synchronization in a non-data-directed manner. An additional adjustment feedback loop (114, 128) includes a phase error offset generator (52) and operates in conjunction with the phase locked loop (54) to allow the phase locked loop (54) to achieve lock and a robust operating point in spite of distortion in a received input analog signal (12).