摘要:
Methods and systems are provided for monitoring an automotive electrical system including an inverter having at least one switch. First and second voltage commands corresponding to respective first and second components of a commanded voltage vector on a synchronous frame of reference coordinate system are received. A plurality of duty cycles for operating the at least one switch are calculated based on the first and second voltage commands. First and second actual voltages are calculated based on the plurality of duty cycles. The first and second actual voltages correspond to respective first and second components of an actual voltage vector on the synchronous frame of reference coordinate system. An indication of a fault is generated based on the difference between the first components of the commanded voltage vector and the actual voltage vector and the difference between the second components of the commanded voltage vector and the actual voltage vector.
摘要:
Systems and apparatus are provided for an inverter system for use in a vehicle having a first energy source and a second energy source. The inverter system comprises an electric motor having a first set of windings and a second set of windings. The inverter system further comprises a first inverter coupled to the first energy source and adapted to drive the electric motor, wherein the first set of windings are coupled to the first inverter. The inverter system also comprises a second inverter coupled to the second energy source and adapted to drive the electric motor, wherein the second set of windings are coupled to the second inverter. A controller is coupled to the first inverter and the second inverter to achieve desired power flow between the first energy source, the second energy source, and the electric motor.
摘要:
Systems and methods are provided for monitoring current in an electric motor. An electrical system includes a (DC) interface, an electric motor, an inverter module coupled between the DC interface and the electric motor, a first current sensor between a first phase leg of the inverter module and a first phase of the electric motor to measure a first current flowing through the first phase of the electric motor, a second current sensor between the first phase leg and the DC interface to measure a second current flowing through the first phase leg, and a control module coupled to the first current sensor and the second current sensor. The control module is configured to initiate remedial action based at least in part on a difference between the first current measured by the first current sensor and the second current measured by the second current sensor.
摘要:
Methods and apparatus are provided for improved discharge of a DC bus which provides power to an inverter. An electric motor system provided with the improved discharge method for discharge of the DC bus includes an electric motor, the inverter which provides electric control for the permanent magnet electric motor, the direct current (DC) bus which provides power to the inverter, and a processor. The processor generates operational control signals and provides such operational control signals to the inverter. In response to detecting a predetermined discharge signal, the processor generates operational control signals for generating a ripple current in motor windings of the electric motor to dissipate energy from the DC bus through a passive load, the passive load including the motor windings of the electric motor.
摘要:
Methods and systems for controlling a power inverter in an electric drive system of an automobile are provided. A signal controlling the power inverter is modified utilizing a first voltage distortion compensation method if a modulation index of the signal is less than a first modulation index value. The signal is modified utilizing a second voltage distortion compensation method if the modulation index is at least equal to the first modulation index value.
摘要:
Systems and apparatus are provided for an inverter module for use in a vehicle. The inverter module comprises a first electrical base and a second electrical base each having an electrically conductive mounting surface, wherein the electrical bases are physically distinct and electrically coupled. A first semiconductor switch has a surface terminal that is coupled to the electrically conductive mounting surface of the first electrical base. A second semiconductor switch has a surface terminal that is coupled to the electrically conductive mounting surface of the first electrical base. A first semiconductor diode and a second semiconductor diode each have a surface terminal, the surface terminals are coupled to the electrically conductive mounting surface of the second electrical base. The first semiconductor switch and first semiconductor diode are antiparallel, and the second semiconductor switch and second semiconductor diode are antiparallel.
摘要:
A double ended inverter system for an AC traction motor of a vehicle includes a fuel cell configured to provide a DC voltage, an impedance source inverter subsystem coupled to the fuel cell, a DC voltage source, and an inverter subsystem coupled to the DC voltage source. The impedance source inverter subsystem, which includes an ultracapacitor, is configured to drive the AC traction motor. The inverter subsystem is configured to drive the AC electric traction motor. The ultracapacitor is implemented in a crossed LC network coupled to the fuel cell.
摘要:
A double ended inverter system suitable for use with an AC electric traction motor of a vehicle is provided. The double ended inverter system cooperates with a first DC energy source and a second DC energy source, which may have different nominal voltages. The double ended inverter system includes an impedance source inverter subsystem configured to drive the AC electric traction motor using the first energy source, and an inverter subsystem configured to drive the AC electric traction motor using the second energy source. The double ended inverter system also utilizes a controller coupled to the impedance source inverter subsystem and to the inverter subsystem. The controller is configured to control the impedance source inverter subsystem and the inverter subsystem in accordance with a boost operating mode, a traditional inverter operating mode, and a recharge operating mode of the double ended inverter system.
摘要:
Systems and methods are provided for charging energy sources with a rectifier using a double-ended inverter system. An apparatus is provided for an electric drive system for a vehicle. The electric drive system comprises an electric motor configured to provide traction power to the vehicle. A first inverter is coupled to the electric motor and is configured to provide alternating current to the electric motor. A first energy source is coupled to the first inverter, wherein the first inverter is configured to provide power flow between the first energy source and the electric motor. A second inverter is coupled to the electric motor and is configured to provide alternating current to the electric motor. A rectifier is coupled to the second inverter and configured to produce a direct current output. The second inverter is configured to provide power from the rectifier to the electric motor.
摘要:
Methods and systems are provided for modeling temperature characteristics of components in a system such as a power module for a hybrid or electric vehicle. A power dissipation value is calculated for each of the components in the system. A first filter is applied to the power dissipation value associated with a selected component to determine its estimated temperature. For each of the neighboring components located adjacent to the selected component, a cross-coupling temperature is estimated by applying other filters to each of the power dissipation values for the neighboring components. The estimated temperature of the selected component and the estimated cross-coupling temperatures for each of the neighboring components can then be added to thereby estimate the operating temperature for the selected component. Further, the operation of the system may be adjusted if the operating temperature determined for the selected component exceeds a threshold value.