摘要:
In a multi-radio device, a configurable filter may be placed on the transmit side of an aggressor radio to reduce interference to receive side performance of a victim radio. The filter may be adaptively configured based on performance of the victim radio. The configurable filter may be in the form of a notch filter. The depth and width of the notch filter may be configured. The filter may be used to create a virtual guard band between an Industrial Scientific and Medical (ISM) band and a cellular band by puncturing a physical uplink control channel (PUCCH) transmission nearest to the ISM band or reducing power on the nearest PUCCH transmission.
摘要:
In a multi-radio device, a configurable filter may be placed on the transmit side of an aggressor radio to reduce interference to receive side performance of a victim radio. The filter may be adaptively configured based on performance of the victim radio. The configurable filter may be in the form of a notch filter. The depth and width of the notch filter may be configured. The filter may be used to create a virtual guard band between an Industrial Scientific and Medical (ISM) band and a cellular band by puncturing a physical uplink control channel (PUCCH) transmission nearest to the ISM band or reducing power on the nearest PUCCH transmission.
摘要:
To improve performance in devices capable of communication using multiple radio access technologies (RATs), a gap pattern may be constructed in which a first RAT is quieted during certain times to allow for a second RAT to operate without interference. Gap patterns may be constructed based on timeline constraints, such as grant scheduling and HARQ performance, or based on desired performance levels of one or more of the RATs. Gap patterns may be selected by a user equipment or base station. Gap patterns may be selected to protect information in certain subframes. Potential gap patterns may be assigned weights indicating their desirability.
摘要:
To improve performance in devices capable of communication using multiple radio access technologies (RATs), a gap pattern may be constructed in which a first RAT is quieted during certain times to allow for a second RAT to operate without interference. Gap patterns may be constructed based on timeline constraints, such as grant scheduling and HARQ performance, or based on desired performance levels of one or more of the RATs. Gap patterns may be selected by a user equipment or base station. Gap patterns may be selected to protect information in certain subframes. Potential gap patterns may be assigned weights indicating their desirability.
摘要:
Prior to implementing a coexistence solution for a multi-radio device, a measurement determines whether interference experienced by one radio is caused by another radio on the device. This determination includes comparing measurements of the first radio during times when the other radio is operational and when the other radio is inactive. If the compared performance measurements are within a certain range, a coexistence/interference management solution may be implemented.
摘要:
Prior to implementing a coexistence solution for a multi-radio device, a measurement determines whether interference experienced by one radio is caused by another radio on the device. This determination includes comparing measurements of the first radio during times when the other radio is operational and when the other radio is inactive. If the compared performance measurements are within a certain range, a coexistence/interference management solution may be implemented.
摘要:
A method for mitigating the impact of a power imbalance on a remote data rate in a wireless local area network (WLAN) includes transmitting a wireless local area network (WLAN) acknowledgement (ACK) packet at a first transmit power level to a remote device. The method further includes transmitting, to the remote device, a WLAN data packet at a second transmit power level that is lower than the first transmit power level of the WLAN ACK packet. Another method for mitigating the impact of a power imbalance on a remote data rate in a wireless local area network (WLAN) may include selecting a wireless local area network (WLAN) acknowledgement (ACK) packet transmit rate independent from a rate at which a WLAN data packet is received. This method further includes transmitting, to a remote device, a WLAN ACK packet at the selected WLAN ACK packet transmit rate.
摘要:
A method for mitigating the impact of a power imbalance on a remote data rate in a wireless local area network (WLAN) includes transmitting a wireless local area network (WLAN) acknowledgement (ACK) packet at a first transmit power level to a remote device. The method further includes transmitting, to the remote device, a WLAN data packet at a second transmit power level that is lower than the first transmit power level of the WLAN ACK packet. Another method for mitigating the impact of a power imbalance on a remote data rate in a wireless local area network (WLAN) may include selecting a wireless local area network (WLAN) acknowledgement (ACK) packet transmit rate independent from a rate at which a WLAN data packet is received. This method further includes transmitting, to a remote device, a WLAN ACK packet at the selected WLAN ACK packet transmit rate.
摘要:
A method of wireless communication includes denying time or frequency resources of a first radio access technology (RAT) to allow communications of a second RAT. Information is reported about the denied resources of the first RAT to facilitate a connection setup on one of the first RAT and the second RAT.
摘要:
A method of wireless communication includes denying time or frequency resources of a first radio access technology (RAT) to allow communications of a second RAT. Information is reported about the denied resources of the first RAT to facilitate a connection setup on one of the first RAT and the second RAT.