摘要:
Described herein are methods and techniques for determining one or more characteristics of a hydrocarbon source. The method comprises obtaining a hydrocarbon fluid sample, determining at least one measured clumped isotope signature or measured position specific isotope signature for at least one hydrocarbon species of interest in the hydrocarbon fluid sample, determining at least one expected clumped isotope signature or expected position specific isotope signature for the hydrocarbon species of interest, comparing the measured clumped isotope signature or measured position specific isotope signature with the expected clumped isotope signature or expected position specific isotope signature, and determining at least one characteristic of the source of the hydrocarbon sample based on the comparison.
摘要:
Described herein are methods and techniques for determining one or more characteristics of a hydrocarbon source. The method comprises obtaining a hydrocarbon fluid sample, determining at least one measured clumped isotope signature or measured position specific isotope signature for at least one hydrocarbon species of interest in the hydrocarbon fluid sample, determining at least one expected clumped isotope signature or expected position specific isotope signature for the hydrocarbon species of interest, comparing the measured clumped isotope signature or measured position specific isotope signature with the expected clumped isotope signature or expected position specific isotope signature, and determining at least one characteristic of the source of the hydrocarbon sample based on the comparison.
摘要:
A method and system are provided for exploration, production and development of hydrocarbons. The method involves analyzing a sample for a geochemical signature, which includes a multiply substituted isotopologue signature and/or a position specific isotope signature. Then, historical temperatures are determined based on the signature. The historical temperature is used to define seal timing, trap timing, migration efficiency and/or charge efficiency, which is used to develop or refine an exploration, development, or production strategy.
摘要:
A method and system are provided for exploration, production and development of hydrocarbons. The method involves analyzing a sample for a geochemical signature, which includes a multiply substituted isotopologue signature and/or a position specific isotope signature. Then, historical temperatures are determined based on the signature. The historical temperature is used to define generation timing, which is used to develop or refine an exploration, development, or production strategy.
摘要:
A system and method is provided for enhancing hydrocarbon production. The method and system involve geochemistry analysis and include multiply substituted isotopologue and position specific isotope geochemistry. The method and system involve using clumped isotope and position-specific isotope signatures to enhance reservoir surveillance operations.
摘要:
A method and system are provided for exploration, production and development of hydrocarbons. The method involves analyzing a sample for a geochemical signature, which includes a multiply substituted isotopologue signature and/or a position specific isotope signature. Then, historical temperatures are determined based on the signature. The historical temperature is used to define generation timing, which is used to develop or refine an exploration, development, or production strategy.
摘要:
Described herein are methods and techniques for utilizing a multiple metal isotope signature as an internal tracers for hydrocarbon source, alteration, and mixing. The multiple metal isotope signature may comprise a ratio of a at least two isotopes of a first metal, a ratio of at least two isotopes of a second metal, and a ratio of at least two isotopes of a third metal from a sample. The isotope ratios of the first, second, and third metal may be integrated to form the multiple metal isotope signature.
摘要:
Provided are methods of estimating a volume of a biogenic gas for an area of interest. The method includes predicting a methanogenesis rate for one or more of the periods of time for the area of interest based on energy available for microbial activity and calculating the volume of the biogenic gas based on the predicted methanogenesis rate for the one or more of the periods of time for the area of interest.