摘要:
Methods and apparatuses to increase a surface area of a memory cell capacitor are described. An opening in a second insulating layer deposited over a first insulating layer on a substrate is formed. The substrate has a fin. A first insulating layer is deposited over the substrate adjacent to the fin. The opening in the second insulating layer is formed over the fin. A first conducting layer is deposited over the second insulating layer and the fin. A third insulating layer is deposited on the first conducting layer. A second conducting layer is deposited on the third insulating layer. The second conducting layer fills the opening. The second conducting layer is to provide an interconnect to an upper metal layer. Portions of the second conducting layer, third insulating layer, and the first conducting layer are removed from a top surface of the second insulating layer.
摘要:
Methods and apparatuses to increase a surface area of a memory cell capacitor are described. An opening in a second insulating layer deposited over a first insulating layer on a substrate is formed. The substrate has a fin. A first insulating layer is deposited over the substrate adjacent to the fin. The opening in the second insulating layer is formed over the fin. A first conducting layer is deposited over the second insulating layer and the fin. A third insulating layer is deposited on the first conducting layer. A second conducting layer is deposited on the third insulating layer. The second conducting layer fills the opening. The second conducting layer is to provide an interconnect to an upper metal layer. Portions of the second conducting layer, third insulating layer, and the first conducting layer are removed from a top surface of the second insulating layer.
摘要:
Methods and apparatuses to increase a surface area of a memory cell capacitor are described. An opening in a second insulating layer deposited over a first insulating layer on a substrate is formed. The substrate has a fin. A first insulating layer is deposited over the substrate adjacent to the fin. The opening in the second insulating layer is formed over the fin. A first conducting layer is deposited over the second insulating layer and the fin. A third insulating layer is deposited on the first conducting layer. A second conducting layer is deposited on the third insulating layer. The second conducting layer fills the opening. The second conducting layer is to provide an interconnect to an upper metal layer. Portions of the second conducting layer, third insulating layer, and the first conducting layer are removed from a top surface of the second insulating layer.
摘要:
A capacitor includes a substrate (110, 210), a first electrically insulating layer (120, 220) over the substrate, and a fin (130, 231) including a semiconducting material (135) over the first electrically insulating layer. A first electrically conducting layer (140, 810) is located over the first electrically insulating layer and adjacent to the fin. A second electrically insulating layer (150, 910) is located adjacent to the first electrically conducting layer, and a second electrically conducting layer (160, 1010) is located adjacent to the second electrically insulating layer. The first and second electrically conducting layers together with the second electrically insulating layer form a metal-insulator-metal stack that greatly increases the capacitance area of the capacitor. In one embodiment the capacitor is formed using what may be referred to as a removable metal gate (RMG) approach.
摘要:
A capacitor includes a substrate (110, 210), a first electrically insulating layer (120, 220) over the substrate, and a fin (130, 231) including a semiconducting material (135) over the first electrically insulating layer. A first electrically conducting layer (140, 810) is located over the first electrically insulating layer and adjacent to the fin. A second electrically insulating layer (150, 910) is located adjacent to the first electrically conducting layer, and a second electrically conducting layer (160, 1010) is located adjacent to the second electrically insulating layer. The first and second electrically conducting layers together with the second electrically insulating layer form a metal-insulator-metal stack that greatly increases the capacitance area of the capacitor. In one embodiment the capacitor is formed using what may be referred to as a removable metal gate (RMG) approach.
摘要:
A capacitor includes a substrate (110, 210), a first electrically insulating layer (120, 220) over the substrate, and a fin (130, 231) including a semiconducting material (135) over the first electrically insulating layer. A first electrically conducting layer (140, 810) is located over the first electrically insulating layer and adjacent to the fin. A second electrically insulating layer (150, 910) is located adjacent to the first electrically conducting layer, and a second electrically conducting layer (160, 1010) is located adjacent to the second electrically insulating layer. The first and second electrically conducting layers together with the second electrically insulating layer form a metal-insulator-metal stack that greatly increases the capacitance area of the capacitor. In one embodiment the capacitor is formed using what may be referred to as a removable metal gate (RMG) approach.
摘要:
Methods and apparatuses to increase a surface area of a memory cell capacitor are described. An opening in a second insulating layer deposited over a first insulating layer on a substrate is formed. The substrate has a fin. A first insulating layer is deposited over the substrate adjacent to the fin. The opening in the second insulating layer is formed over the fin. A first conducting layer is deposited over the second insulating layer and the fin. A third insulating layer is deposited on the first conducting layer. A second conducting layer is deposited on the third insulating layer. The second conducting layer fills the opening. The second conducting layer is to provide an interconnect to an upper metal layer. Portions of the second conducting layer, third insulating layer, and the first conducting layer are removed from a top surface of the second insulating layer.
摘要:
In one embodiment, a capacitor comprises a substrate, a first electrically insulating layer over the substrate, a fin comprising a semiconducting material over the first electrically insulating layer, a cap formed from a suicide material on the first semiconducting fin, a first electrically conducting layer over the first electrically insulating layer and adjacent to the fin, a second electrically insulating layer adjacent to the first electrically conducting layer and a second electrically conducting layer adjacent to the second electrically insulating
摘要:
In one embodiment, a capacitor comprises a substrate, a first electrically insulating layer over the substrate, a fin comprising a semiconducting material over the first electrically insulating layer, a cap formed from a silicide material on the first semiconducting fin, a first electrically conducting layer over the first electrically insulating layer and adjacent to the fin, a second electrically insulating layer adjacent to the first electrically conducting layer and a second electrically conducting layer adjacent to the second electrically insulating layer.
摘要:
A capacitor includes a substrate (110, 210), a first electrically insulating layer (120, 220) over the substrate, and a fin (130, 231) including a semiconducting material (135) over the first electrically insulating layer. A first electrically conducting layer (140, 810) is located over the first electrically insulating layer and adjacent to the fin. A second electrically insulating layer (150, 910) is located adjacent to the first electrically conducting layer, and a second electrically conducting layer (160, 1010) is located adjacent to the second electrically insulating layer. The first and second electrically conducting layers together with the second electrically insulating layer form a metal-insulator-metal stack that greatly increases the capacitance area of the capacitor. In one embodiment the capacitor is formed using what may be referred to as a removable metal gate (RMG) approach.