摘要:
The present invention relates to a power management system comprising at least one power management subsystem. Each power management subsystem comprises a first power module coupled to a first load and comprising at least one first power supply for supplying power to the first load; a second power module coupled to a second load and comprising at least one second power supply, wherein at least one second power supply is retractably installed in the second power module and selectively coupled to the second load; and a pass-through module comprising at least one pass-through unit retractably installed in the second power module to replace with the at least one second power supply and selectively connecting the first power module to the second load for allowing the first power module to supply power to the second load.
摘要:
A power supply comprises an input voltage detector that detects a drop in input voltage that corresponds to an input voltage loss. A power converter is coupled to the input voltage detector. The power converter, which may be a boost converter or a power factor correction converter, has a switching device that is actuated in accordance with a duty cycle. A duty cycle adjuster is responsive to detection of the drop in the input voltage to adjust the duty cycle of the switching device in order to limit an input current surge through the switching device below a desired level after the input voltage returns.
摘要:
A power supply having an specified hold-up time to take a input voltage and convert it to an output voltage, comprising: a first power stage to receive the input voltage; a second power stage to generate the output voltage and an output current; an intermediate charge storage device coupled between the first and second power conversion stages providing an intermediate output voltage in response to the input voltage; and a controller that controls the intermediate output voltage according to a voltage function that is associated with the hold-up time.
摘要:
The present invention relates to a power management system comprising at least one power management subsystem. Each power management subsystem comprises a first power module coupled to a first load and comprising at least one first power supply for supplying power to the first load; a second power module coupled to a second load and comprising at least one second power supply, wherein at least one second power supply is retractably installed in the second power module and selectively coupled to the second load; and a pass-through module comprising at least one pass-through unit retractably installed in the second power module to replace with the at least one second power supply and selectively connecting the first power module to the second load for allowing the first power module to supply power to the second load.
摘要:
A power supply comprises an input voltage detector that detects a drop in input voltage that corresponds to an input voltage loss. A power converter is coupled to the input voltage detector. The power converter, which may be a boost converter or a power factor correction converter, has a switching device that is actuated in accordance with a duty cycle. A duty cycle adjuster is responsive to detection of the drop in the input voltage to adjust the duty cycle of the switching device in order to limit an input current surge through the switching device below a desired level after the input voltage returns.
摘要:
A power converter system supplies power to one or more loads. The power converter system comprises at least one power converter operating at a desired efficiency; and a power storage system coupled to the at least one power converter for receiving power supplied from the at least one power converter and storing power therein when the at least one power converter operates at an efficiency that is below the desired efficiency.
摘要:
An isolated boost converter includes first and second switches that are switched simultaneously, a transformer and an energy storage capacitor on the primary side of the transformer for storing energy received from input power source. In one embodiment, when the first and second switches are closed, the energy in the capacitor is transferred to the output load while a boost inductor is charged, and when the first and second switches are open, the boost inductor provides energy from the input voltage source to supply the load and to charge the capacitor, In one embodiment, a third switch is provided to relieve the voltage stress on the secondary side.
摘要:
A circuit technique that substantially reduces the boost-converter losses caused by the reverse-recovery characteristics of the rectifier is described. The losses are reduced by inserting an inductor in the series path of the boost switch and the rectifier to control the di/dt rate of the rectifier during its turn-off. The energy from the inductor after the boost switch turn-off is returned to the input or delivered to the output via an active snubber. The same technique can be extended to any member of the PWM-converter family.
摘要:
Control device for a switching converter structure comprising at least a first and a second interleaved converter, wherein the control device is configured to designate one converter as master and at least the other converter as slave, to set a time delay of the operating cycle of the slave converter and to synchronize the master and the at the least one slave converter.
摘要:
Three-level, constant-frequency, soft-switched isolated converters provide zero-voltage-switching (ZVS) conditions for the turn-on of all primary switches over a wide range of input voltage and output load. These converters achieve ZVS with the minimum duty cycle loss and circulating current, which optimizes the conversion efficiency. The ZVS of the primary switches is achieved by the energy stored in an inductor on the primary side of the isolation transformer. The inductor and transformer are arranged so that a change in the phase shift between the outer and inner pair of switches of the series connection of four switches changes the volt-second product on the windings of the transformer and the windings of the inductor in opposite directions. In some embodiments the primary-side inductor is coupled inductor with two windings, whereas in the other embodiments the inductor has only one winding.