摘要:
The invention relates to a process for determing lumnescence with a planar dielectric optical sensor platform which consists of a transparent substrate to which a thin transparent waveguiding layer is applied, which sensor platform is provided with a coupling grating for the input-coupling of the excitation light and the refractive index of the substrate is lower than the refractive index of the waveguiding layer, by briging a liquid sample as superstrate into contact with the layer, and measuring the luminescence produced by substances having luminescence properties in the sample, or by substances having luminescence properties immobilized on the layer, optoelectronically. The invention also relates to the use of the process in quantitative affinity sensing and to the use thereof for the quantitative determination of luminescent constituents in optically turbid solutions, and to sensor platform for carrying out the process.
摘要:
The invention relates to a sensor platform based on at least two planar, separate, inorganic dielectric waveguiding regions on a common substrate and to a method for the parallel evanescent excitation and detection of the luminescence of identical or different analytes. The invention relates also to a modified sensor platform that consists of the sensor platform having the planar, separate, inorganic dielectric waveguiding regions and one or more organic phases immobilised thereon. A further subject of the invention is the use of the sensor platform or of the modified sensor platform in a luminescence detection method for quantitative affinity sensing and for the selective quantitative determination of luminescent constituents of optically opaque solutions.
摘要:
The invention relates to a process for detecting luminescence with a planar dielectric optical sensor platform consisting of a transparent substrate (a) to which a thin transparent waveguiding layer (b) is applied, which sensor platform is provided with a grating for the input-coupling of the excitation light and the refractive index of said substrate (a) is lower than the refractive index of the waveguiding layer (b), by bringing a liquid sample into contact with the layer (b), and measuring the luminescence produced by substances having luminescence properties in the sample, or by substances having luminescence properties immobilized on the layer (b), optoelectronically. The invention also relates to the use of the process in quantitative affinity sensing and to the use thereof for the quantitative determination of luminescent constituents in optically turbid solutions.
摘要:
Calibration and normalization methods for a grating-based sensor design are disclosed. The sensor may be constructed in a manner optimized for both label-free and luminescence, e.g. fluorescence, amplification detection in a single device. Such a sensor, based on grating or another periodical structure with appropriate coating, dramatically increases the diversity of applications and allows realizing novel concepts that provide qualitative and quantitative information/data for each location or capture element in the sensor surface. The invention takes advantage of these different modes to carry out a quality control (QC) step and a calibration of each individual location of the sensor. Thus, the assay data can be flagged according to their quality and local density variations, batch variations and variations in the printed deposition of probes or the materials to the surface can be compensated.