摘要:
A process for preparing a 1,3-alkandiol from a 3-hydroxyester, comprises preparing a catalyst by adding an alkaline precipitator to an aqueous copper salt solution to form copper hydroxide particles, and aging the particles following the addition of a colloidal silica thereto; activating the catalyst by reduction with a H2 gas or a H2-containing gas and applying a pressure of about 5 psig to about 2000 psig at a temperature of about 100° C. to about 250° C. in the presence of an activation solvent; and hydrogenating a 3-hydroxyester in a liquid phase slurry with a H2 gas or a H2-containing gas and applying a pressure of about 50 psig to about 3000 psig at a temperature of about 100° C. to about 250° C. in the presence of the activated catalyst and a reaction solvent, whereby a 1,3-alkanediol can be selectively prepared from a 3-hydroxyester with a high yield.
摘要:
A process for preparing a malonic acid monoester or &bgr;-ketoester from an epoxide includes the steps of reacting an epoxide with carbon monoxide and an alcohol in the presence of a catalytic amount of a cobalt compound and at least one promoter to produce a &bgr;-hydroxyester, separating the &bgr;-hydroxyester from the cobalt compound and the promoter, and oxidizing the &bgr;-hydroxyester to produce a malonic acid monoester or &bgr;-ketoester.
摘要:
A process for preparing an 1,3-alkanediol from a 3-hydroxyester includes hydrogenating a 3-hydroxyester in an alcohol-containing solvent in the presence of a hydrogenation catalyst prepared by adding an alkaline precipitator to an aqueous solution containing a copper salt to form particles, and then aging the particles following addition of colloidal silica thereto. Novel hydrogenation catalysts so prepared are also disclosed.
摘要:
Disclosed herein is a novel process for preparing 3-hydroxyesters, comprising: (a) reacting an epoxide derivative with carbon monoxide and alcohol in a solvent at a temperature of 30˜150° C. under a pressure of 50˜3000 psig by using a catalyst system consisting of a catalytic amount of a cobalt compound and optionally an effective amount of a promoter to produce a 3-hydroxyester or a derivative thereof; (b) separating the resulting product and the solvent from the cobalt compound and the promoter in a stripping column at a temperature of −30˜200° C. in an atmosphere of a stabilizing gas; and (c) recycling a part or all of the separated cobalt compound and promoter to the step (a) and repeating the steps (a) through (c).