Abstract:
The present invention pertains to engineered T-cells, method for their preparation and their use as medicament, particularly for immunotherapy. The engineered T-cells of the invention are characterized in that the expression of beta 2-microglobulin (B2M) and/or class II major histocompatibility complex transactivator (CIITA) is inhibited, e.g., by using rare-cutting endonucleases able to selectively inactivating by DNA cleavage the gene encoding H2M and/or CIITA or by using nucleic acid molecules which inhibit the expression of B2M and/or CIITA. In order to further render the T-cell non-alloreactive, at least one gene encoding a component of the T-cell receptor is inactivated, e.g., by using a rare-cutting endonucleases able to selectively inactivating by DNA cleavage the gene encoding said TCR component. In addition, expression of immunosuppressive polypeptide can be performed on those modified T-cells in order to prolong the survival of these modified T cells in host organism. Such modified T-cell is particularly suitable for allogeneic transplantations, especially because it reduces both the risk of rejection by the host's immune system and the risk of developing graft versus host disease. The invention opens the way to standard and affordable adoptive immunotherapy strategies using T-Cells for treating cancer, infections and auto-immune diseases.
Abstract:
The present invention provides composition kits and methods for treating cancer in a human by immunotherapy using successive doses of CAR-T cells with no or reduced anamnestic immune reaction in one individual (P).
Abstract:
The present invention relates to a method for generating batches of lymphocytes with averaged potency. In particular, the present invention relates to a method of pooling lymphocytes from different donors to avoid NK alloreactivity and anti-HLA immune response. Lymphocytes from each donor are inactivated for at least a gene encoding a TCR component, and are pooled together before be administrated to a subject in need thereof. Thus, this method allows generating batches of lymphocytes with averaged potency, particularly to treat cancer, viral infection or auto-immune disease. The present invention also relates to a batch of lymphocytes obtainable by this method. The batch of lymphocytes can be used to be administrated to one or several patients, being made available as an “off the shelf” therapeutic product, in particular to treat cancer, auto-immune disease or viral infection.
Abstract:
The present invention provides composition kits and methods for treating cancer in a human by immunotherapy using successive doses of CAR-T cells with no or reduced anamnestic immune reaction in one individual (P).
Abstract:
The invention provides engineered diatoms and methods of producing oil using diatoms. The invention also provides methods of modifying the lipids quantity and/or quality produced by diatom organisms through genome engineering. Also provided are oils, fuels, oleochemicals, chemical precursors, and other compounds manufactured from such modified diatoms.
Abstract:
The present invention pertains to engineered T-cells, method for their preparation and their use as medicament, particularly for immunotherapy. The engineered T-cells of the invention are characterized in that the expression of beta 2-microglobulin (B2M) and/or class II major histocompatibility complex transactivator (CIITA) is inhibited, e.g., by using rare-cutting endonucleases able to selectively inactivating by DNA cleavage the gene encoding B2M and/or CIITA, or by using nucleic acid molecules which inhibit the expression of B2M and/or CIITA. In order to further render the T-cell non-alloreactive, at least one gene encoding a component of the T-cell receptor is inactivated, e.g., by using a rare-cutting endonucleases able to selectively inactivating by DNA cleavage the gene encoding said TCR component. In addition, expression of immunosuppressive polypeptide can be performed on those modified T-cells in order to prolong the survival of these modified T cells in host organism. Such modified T-cell is particularly suitable for allogeneic transplantations, especially because it reduces both the risk of rejection by the host's immune system and the risk of developing graft versus host disease. The invention opens the way to standard and affordable adoptive immunotherapy strategies using T-Cells for treating cancer, infections and auto-immune diseases.
Abstract:
The present invention relates to compositions comprising engineered allogenic immune cells endowed with Chimeric Antigen Receptors (CAR), in particular a CAR specific for CD123 and CLL1 for treating AML patients with adverse genetic risk.
Abstract:
The present invention pertains to engineered T-cells, method for their preparation and their use as medicament, particularly for immunotherapy. The engineered T-cells of the invention are characterized in that the expression of beta 2-microglobulin (B2M) and/or class II major histocompatibility complex transactivator (CIITA) is inhibited, e.g., by using rare-cutting endonucleases able to selectively inactivating by DNA cleavage the gene encoding B2M and/or CIITA, or by using nucleic acid molecules which inhibit the expression of B2M and/or CIITA. In order to further render the T-cell non-alloreactive, at least one gene encoding a component of the T-cell receptor is inactivated, e.g., by using a rare-cutting endonucleases able to selectively inactivating by DNA cleavage the gene encoding said TCR component. In addition, expression of immunosuppressive polypeptide can be performed on those modified T-cells in order to prolong the survival of these modified T cells in host organism. Such modified T-cell is particularly suitable for allogeneic transplantations, especially because it reduces both the risk of rejection by the host's immune system and the risk of developing graft versus host disease. The invention opens the way to standard and affordable adoptive immunotherapy strategies using T-Cells for treating cancer, infections and auto-immune diseases.
Abstract:
The present invention relates to the use of “off-the-shelf” allogeneic therapeutic cells for immunotherapy in conjunction with chemotherapy to treat patients with cancer. In particular, the inventors develop a method of engineering allogeneic T-cell resistant to chemotherapeutic agents. The therapeutic benefits afforded by this strategy should be enhanced by the synergistic effects between chemotherapy and immunotherapy. In particular, the present invention relates to a method for modifying T-cells by inactivating at least one gene encoding T-cell receptor component and by modifying said T-cells to confer drug resistance. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer.