Abstract:
An electronic device connected with numerous first load medias and numerous second load medias. The electronic device comprises a processor and a switch module. The processor is capable of switching between a first working mode and a second working mode. Under the second working mode, the processor generates a second control signal, the switch mode establishes independent electronic connections between a specified first load media and all of the second load medias, thus, the specified first load media simultaneously connects and communicates with all of the second load medias.
Abstract:
A power supply control circuit used to control a power supply to supply a MCU includes a first transistor switch, a RC circuit, a power switch control circuit, and an input signal control circuit. When the power switch control circuit is grounded via the MCU, the RC circuit is discharged to ground and the first transistor switch is switched on, such that the power supply supplies power to the MCU. When the MCU outputs a control signal to the input signal control circuit, the RC circuit is discharged to ground and the first transistor switch is switched on, such that the power supply supplies power to the MCU. When the MCU stops outputting the control signal to the input signal control circuit, the RC circuit is charged and the first transistor switch is switched off, such that the power supply does not supply power to the MCU.
Abstract:
An electrostatic discharge protection circuit includes an input terminal, a first diode, a second diode, a third diode, a fourth diode, a plurality of voltage stabilizer circuits, and a power terminal. The input terminal and the cathode of the second diode connect to the anode of the first diode; the voltage stabilizer circuits connect in parallel between the cathode of the first diode and the anode of the second diode. The power terminal connects to the anode of the third diode, the cathode of the third diode connects to the cathode of the first diode. The cathode of the fourth diode connects to ground, the anode of the fourth diode connects to the anode of the second diode.
Abstract:
A power supply circuit includes a rectifying circuit, at least one filter member, a transformer, and a control circuit. The rectifying circuit is configured to receive a primary AC voltage signal and convert the primary AC voltage signal to a DC voltage signal. The at least one filter member is grounded via a current-limiting module, and is configured to filter the DC voltage signal. The transformer is configured to transform the filtered DC voltage signal to a main power voltage signal, and output the main power voltage signal. The control circuit is configured to enable the current-limiting element to function when the power supply circuit is powered on, and disable the current-limiting element when the power supply circuit is in a normal working state.
Abstract:
An extensible switching power circuit includes a plurality of switching power modules and a plurality of synchronous signal generators. Every two adjacent switching power modules are connected through a synchronous signal generator. The switching power modules generate induction electric potentials. Each synchronous pulse generator measures relevant electric potentials of the previous switching power module connected thereto and generates corresponding synchronous signals sent to the subsequent switching power module connected thereto. The subsequent switching power module regulates the phase of its induction electric potential according to the synchronous signals, such that the induction electric potentials of the two adjacent switching power modules compensate each other's energy gaps.