Abstract:
The present invention relates to an RhtB (homoserine/homoserine lactone export transporter) protein variant having an enhanced ability to export O-phosphoserine (OPS) that is a precursor of L-cysteine, a polynucleotide encoding the protein, a vector comprising the polynucleotide, an OPS-producing microorganism comprising the protein variant, a method of producing O-phosphoserine using the microorganism, and a method for preparing cysteine or its derivatives, which comprises reacting O-phosphoserine, produced by the method above, with a sulfide in the presence of O-phosphoserine sulfhydrylase (OPSS) or a microorganism that expresses OPSS.
Abstract:
The present invention relates to an RhtB (homoserine/homoserine lactone export transporter) protein variant having an enhanced ability to export O-phosphoserine (OPS) that is a precursor of L-cysteine, a polynucleotide encoding the protein, a vector comprising the polynucleotide, an OPS-producing microorganism comprising the protein variant, a method of producing O-phosphoserine using the microorganism, and a method for preparing cysteine or its derivatives, which comprises reacting O-phosphoserine, produced by the method above, with a sulfide in the presence of O-phosphoserine sulfhydrylase (OPSS) or a microorganism that expresses OPSS.
Abstract:
The present invention relates to an RhtB (homoserine/homoserine lactone export transporter) protein variant having an enhanced ability to export O-phosphoserine (OPS) that is a precursor of L-cysteine, a polynucleotide encoding the protein, a vector comprising the polynucleotide, an OPS-producing microorganism comprising the protein variant, a method of producing O-phosphoserine using the microorganism, and a method for preparing cysteine or its derivatives, which comprises reacting O-phosphoserine, produced by the method above, with a sulfide in the presence of O-phosphoserine sulfhydrylase (OPSS) or a microorganism that expresses OPSS.
Abstract:
The present invention provides methods for the production of cysteine or derivates thereof by culturing a microorganism having reduced activity of endogenous phosphoserine phosphatase. The O-phosphoserine produced by such an organism can then be reacted with a sulfide in the presence of a sulfydrylase or a microorganism expressing a sulfhydrylase to produce cysteine or a derivative thereof. Microorganisms having the properties noted above are also provided herein.
Abstract:
The present application relates to a microorganism producing O-phosphoserine and a method for producing O-phosphoserine, cysteine or a cysteine derivative using same.
Abstract:
The present invention relates to a microorganism, wherein the activity of a polypeptide capable of exporting O-phosphoserine (OPS) is enhanced, and a method of producing O-phosphoserine, cysteine, or a cysteine derivative using the microorganism.
Abstract:
The present invention relates to an RhtB (homoserine/homoserine lactone export transporter) protein variant having an enhanced ability to export O-phosphoserine (OPS) that is a precursor of L-cysteine, a polynucleotide encoding the protein, a vector comprising the polynucleotide, an OPS-producing microorganism comprising the protein variant, a method of producing O-phosphoserine using the microorganism, and a method for preparing cysteine or its derivatives, which comprises reacting O-phosphoserine, produced by the method above, with a sulfide in the presence of O-phosphoserine sulfhydrylase (OPSS) or a microorganism that expresses OPSS.