Abstract:
A process for desorbing CO2 gas from an ion-rich aqueous mixture comprising bicarbonate and hydrogen ions, includes providing micro-particles in the ion-rich aqueous mixture; and feeding the ion-rich aqueous mixture into a desorption reactor; the micro-particles comprising a support material and biocatalysts supported and stabilized by the support material and being sized and provided in a concentration in the desorption reactor such that the micro-particles are carried with the ion-rich aqueous mixture to promote transformation of the bicarbonate and hydrogen ions into CO2 gas and water, thereby producing a CO2 gas stream and an ion-depleted solution.
Abstract:
A formulation and process for capturing CO2 use an absorption mixture containing water, biocatalysts and a carbonate compound. The process includes contacting a CO2-containing gas with the absorption mixture to enable dissolution and transformation of CO2 into bicarbonate and hydrogen ions, thereby producing a CO2-depleted gas and an ion-rich solution, followed by subjecting the ion-rich solution to desorption. The biocatalyst improves absorption of the mixture comprising carbonate compounds and the carbonate compound promotes release of the bicarbonate ions from the ion-rich solution during desorption, producing a CO2 gas stream and an ion-depleted solution.
Abstract:
A process for desorbing CO2 gas from an ion-rich aqueous mixture comprising bicarbonate and hydrogen ions, includes providing micro-particles in the ion-rich aqueous mixture; and feeding the ion-rich aqueous mixture into a desorption reactor; the micro-particles comprising a support material and biocatalysts supported and stabilized by the support material and being sized and provided in a concentration in the desorption reactor such that the micro-particles are carried with the ion-rich aqueous mixture to promote transformation of the bicarbonate and hydrogen ions into CO2 gas and water, thereby producing a CO2 gas stream and an ion-depleted solution.
Abstract:
A process for desorbing CO2 gas from an ion-rich aqueous mixture comprising bicarbonate and hydrogen ions, includes providing micro-particles in the ion-rich aqueous mixture; and feeding the ion-rich aqueous mixture into a desorption reactor; the micro-particles comprising a support material and biocatalysts supported and stabilized by the support material and being sized and provided in a concentration in the desorption reactor such that the micro-particles are carried with the ion-rich aqueous mixture to promote transformation of the bicarbonate and hydrogen ions into CO2 gas and water, thereby producing a CO2 gas stream and an ion-depleted solution.
Abstract:
A formulation and process for capturing CO2 use an absorption mixture containing water, biocatalysts and a carbonate compound. The process includes contacting a CO2-containing gas with the absorption mixture to enable dissolution and transformation of CO2 into bicarbonate and hydrogen ions, thereby producing a CO2-depleted gas and an ion-rich solution, followed by subjecting the ion-rich solution to desorption. The biocatalyst improves absorption of the mixture comprising carbonate compounds and the carbonate compound promotes release of the bicarbonate ions from the ion-rich solution during desorption, producing a CO2 gas stream and an ion-depleted solution.
Abstract:
A formulation and process for capturing CO2 use an absorption mixture containing water, biocatalysts and an absorption compound selected from dimethylmonoethanolamine (DMMEA), diethylmonoethanolamine (DEMEA), and dimethylglycine. The process may include contacting a CO2-containing gas with the absorption mixture to enable dissolution and transformation of CO2 into bicarbonate and hydrogen ions, thereby producing a CO2-depleted gas and an ion-rich solution, followed by subjecting the ion-rich solution to desorption.
Abstract:
A method, process, apparatus, use and formulation for dual biocatalytic conversion of CO2 containing gas into carbon containing bio-products by enzymatic hydration of CO2 into bicarbonate ions in the presence of carbonic anhydrase and metabolic conversion of the bicarbonate ions into carbon containing bio-products in a biological culture. The dual biocatalytic conversion may be relatively constant with controlling a feeding of the bicarbonate ions to the biological culture in accordance with demands of the biological culture by retaining over-production of bicarbonate ions and feeding part of the over-production to the biological culture in accordance with nutrient demands of the biological culture. Bicarbonate ions may also be reconverted to generate a pure CO2 gas stream. The CO2 containing gas may be derived from operations of a power plant which receives a carbon-containing fuel for combustion, and the biological culture may be an algae culture.