Abstract:
A handle assembly for a prosthesis delivery device is disclosed. The handle assembly comprises a stationary main handle having a proximal end and a distal end and an outer surface extending therebetween. A first helical groove is formed in at least a portion of the outer surface of the main handle and a first trigger wire actuation mechanism disposed about the main handle and rotatably moveable relative to the main handle. A first trigger wire is operatively connected to the first trigger wire actuation mechanism, the first trigger wire having a prosthesis capture condition and a prosthesis release condition. Movement of the first trigger wire actuation mechanism causes movement of the first trigger wire thereby moving the first trigger wire from the prosthesis capture condition to the prosthesis release condition. Additional trigger wire actuation mechanisms operatively connected to one or more additional trigger wires may also be disposed about the main handle.
Abstract:
A modular handle assembly for a prosthesis delivery device is disclosed. The modular handle assembly has a stationary main handle and a first handle that extends proximally from the main handle and is rotationally moveable relative to the main handle. A second handle extends distally from the main handle and is rotationally moveable relative to the main handle. The main handle has a first rotational interface and a second rotational interface that are configured to engage with the first handle and the second handle, respectively.
Abstract:
A handle assembly for a prosthesis delivery device is disclosed. The handle assembly includes a main handle, a rotatable handle, a retractable sheath operatively coupled to the rotatable handle, at least one rotatable ring having a rotatable inner surface, the at least one rotatable ring coupled to a distal end of at least one trigger wire, and the at least one trigger wire having a proximal end configured to releasably engage a prosthesis. Rotation of the rotatable handle is configured to retract the sheath in a distal direction and rotation of the at least one rotatable ring is configured to wind at least a portion of the trigger wire onto the rotatable inner surface and withdraw the at least one trigger wire in the distal direction.
Abstract:
A handle assembly for a prosthesis delivery device is described. The handle assembly comprises a stationary main handle having a proximal end and a distal end and an outer surface extending there between. A first handle extends proximally from the main handle and is rotationally moveable relative to the main handle, the first handle having a proximal end and a distal end and defining a first handle interior. A second handle extends distally from the main handle and is rotationally moveable relative to the main handle, the second handle having a proximal end and a distal end and defining a second handle interior. The first handle comprises a threaded internal surface extending between the proximal and distal ends and the second handle comprises a threaded internal surface extending between the proximal and distal ends.
Abstract:
A handle assembly for a prosthesis delivery device is described. The handle assembly comprises a stationary main handle having a proximal end and a distal end and an outer surface extending there between. A first handle extends proximally from the main handle and is rotationally moveable relative to the main handle, the first handle having a proximal end and a distal end and defining a first handle interior. A second handle extends distally from the main handle and is rotationally moveable relative to the main handle, the second handle having a proximal end and a distal end and defining a second handle interior. The first handle comprises a threaded internal surface extending between the proximal and distal ends and the second handle comprises a threaded internal surface extending between the proximal and distal ends.
Abstract:
A handle assembly for a prosthesis delivery device is disclosed. The handle assembly comprises a stationary main handle having a proximal end and a distal end and an outer surface extending therebetween. A first helical groove is formed in at least a portion of the outer surface of the main handle and a first trigger wire actuation mechanism disposed about the main handle and rotatably moveable relative to the main handle. A first trigger wire is operatively connected to the first trigger wire actuation mechanism, the first trigger wire having a prosthesis capture condition and a prosthesis release condition. Movement of the first trigger wire actuation mechanism causes movement of the first trigger wire thereby moving the first trigger wire from the prosthesis capture condition to the prosthesis release condition. Additional trigger wire actuation mechanisms operatively connected to one or more additional trigger wires may also be disposed about the main handle.
Abstract:
Prostheses and methods of making the same are provided. The prosthesis has an internal branch configuration. A trough or branch opening is at least partially defined by a trough wall extending into a main lumen from a sidewall of the prosthesis. The internal branch extends from the trough within the main lumen towards one of the outflow end of the graft body in a helical, retrograde arrangement. Other arrangements are described. The prosthesis may include a scalloped fenestration having a width larger than the trough. The trough may be positioned along a tapered region of the prosthesis. The trough and internal branch may be made from the same graft material. The trough and internal branch, in addition to the main graft body, may be made from the same graft material.
Abstract:
A prosthesis delivery device includes an inner cannula, a positioner disposed coaxially over a first portion of the inner cannula, a concentric cannula disposed coaxially over a second portion of the inner cannula, and a tip assembly disposed over a third portion of the inner cannula. A distal end of the concentric cannula is attached to a proximal end of the positioner. The tip assembly comprises a distal tip segment and a proximal tip segment, with the distal tip segment attached to a proximal end of the concentric cannula and the proximal tip segment attached to a proximal end of the inner cannula. A prosthesis is carried on the concentric cannula and a sheath is mounted coaxially over the prosthesis. The sheath comprises a split defining a proximal sheath segment and a distal sheath segment. A proximal end of the proximal sheath segment is attached to the proximal tip segment.
Abstract:
A prosthesis delivery device includes an inner cannula, a positioner disposed coaxially over a first portion of the inner cannula, a concentric cannula disposed coaxially over a second portion of the inner cannula, and a tip assembly disposed over a third portion of the inner cannula. A distal end of the concentric cannula is attached to a proximal end of the positioner. The tip assembly comprises a distal tip segment and a proximal tip segment, with the distal tip segment attached to a proximal end of the concentric cannula and the proximal tip segment attached to a proximal end of the inner cannula. A prosthesis is carried on the concentric cannula and a sheath is mounted coaxially over the prosthesis. The sheath comprises a split defining a proximal sheath segment and a distal sheath segment. A proximal end of the proximal sheath segment is attached to the proximal tip segment.
Abstract:
An endoluminal prosthesis assembly includes a delivery system having an introduction end, an operator end, and a stent graft retention region. An endoluminal prosthesis is disposed at the stent graft retention region. The prosthesis comprises a tubular body, an inner lumen extending between proximal and distal ends of the tubular body, at least one fenestration disposed in a sidewall of the body, and an internal branch at least partially formed with the sidewall of the body and disposed in parallel alignment with the prosthesis. A guide wire having a first end and a second end is pre-loaded with the prosthesis in the delivery system. At least a portion of the guide wire is disposed within the internal branch and the inner lumen of tubular body of the prosthesis prior to delivery of the prosthesis and during delivery and deployment of the prosthesis. The second end of the guide wire extends distally from the distal opening of the tubular body, and the first end of the guide wire extends through the internal branch and the at least one fenestration such that a portion of the guide wire is externally disposed relative to the prosthesis. The externally disposed portion of the guide wire is bent back on itself to form an externally disposed loop.