Abstract:
A frequency comb generator fabricated on a chip with elimination of a disadvantageous reflow process, includes an ultra-high Q disk resonator having a waveguide that is a part of a wedge structure fabricated from a silicon dioxide layer of the chip. The disk resonator allows generation of a frequency comb with a mode spacing as low as 2.6 GHz and up to 220 GHz. A surface-loss-limited behavior of the disk resonator decouples a strong dependence of pumping threshold on repetition rate.
Abstract:
An optical apparatus comprises a waveguide substrate and an optical reference cavity. The optical reference cavity comprises an optical waveguide formed on the waveguide substrate and arranged to form a closed loop greater than or about equal to 10 cm in length. The RMS resonance frequency fluctuation is less than or about equal to 100 Hz. The Q-factor can be greater than or about equal to 108. The optical waveguide can exhibit optical loss less than or about equal to 0.2 dB/m for propagation of an optical signal along the optical waveguide. The closed loop path can comprise two or more linked spirals greater than or about equal to 1 meter in length and can occupy an area on the waveguide substrate less than or about equal to 5 cm2.
Abstract:
An optical apparatus comprises a waveguide substrate and an optical reference cavity. The optical reference cavity comprises an optical waveguide formed on the waveguide substrate and arranged to form a closed loop greater than or about equal to 10 cm in length. The RMS resonance frequency fluctuation is less than or about equal to 100 Hz. The Q-factor can be greater than or about equal to 108. The optical waveguide can exhibit optical loss less than or about equal to 0.2 dB/m for propagation of an optical signal along the optical waveguide. The closed loop path can comprise two or more linked spirals greater than or about equal to 1 meter in length and can occupy an area on the waveguide substrate less than or about equal to 5 cm2.
Abstract:
A microwave-frequency source at frequency fM comprises: a dual optical-frequency reference source, an electro-optic sideband generator, an optical bandpass filter, an optical detector, a reference oscillator, an electrical circuit, and a voltage-controlled oscillator (VCO). The sideband generator modulates dual optical reference signals at v2 and v1 to generate sideband signals at v1±n1fM and v2±n2fM. The bandpass filter transmits sideband signals at v1+N1fM and v2−N2fM. The optical detector generates a beat note at (v2−N2fM)−(v1+N1fM). The beat note and a reference oscillator signal are processed by the circuit to generate a loop-filtered error signal to input to the VCO. Output of the VCO at fM drives the sideband generator and forms the microwave-frequency output signal. The resultant frequency division results in reduced phase noise on the microwave-frequency signal.
Abstract:
A microwave-frequency source at frequency fM comprises: a dual optical-frequency reference source, an electro-optic sideband generator, an optical bandpass filter, an optical detector, a reference oscillator, an electrical circuit, and a voltage-controlled oscillator (VCO). The sideband generator modulates dual optical reference signals at v2 and v1 to generate sideband signals at v1±n1fM and v2±n2fM. The bandpass filter transmits sideband signals at v1+N1fM and v2−N2fM. The optical detector generates a beat note at (v2−N2fM)−(v1+N1fM). The beat note and a reference oscillator signal are processed by the circuit to generate a loop-filtered error signal to input to the VCO. Output of the VCO at fM drives the sideband generator and forms the microwave-frequency output signal. The resultant frequency division results in reduced phase noise on the microwave-frequency signal.