Abstract:
A dual frequency ultrasonic and sonic actuator with constrained impact mass is presented. According to one aspect, displacement of the impact mass is constrained by cavity to which ultrasonic stress from the tip of a horn is applied. According to another aspect, the displacement of the impact mass is constrained by a spring attached to the tip of the horn. According to another aspect, the displacement of the impact mass is constrained by a flexure. The constrained impact mass converts the ultrasonic stress to lower frequency sonic stress that is coupled to a transmitting element for transmission through a surface. According to one aspect, the transmitting element is a longitudinal probe. According to another aspect, the transmitting element is a drill bit used to penetrate though the surface. According to another aspect, the transmitting element is a thumper used to transmit elastic waves though the surface.
Abstract:
A valve that allows control of each of one or more flow paths using one actuator is presented. Rotary motion of a motor is transformed into linear motion using a roller screw mechanism. The travel of the roller screw nut is predefined between front and back hard stops that prevent the roller screw from rotating when the stops are reached. A poppet is attached to the nut using a flexible connection. The nut drives a sleeve with inclined surfaces that moves relative to a locking flexure. When the sleeve is driven, it deforms flanges of the locking flexure causing a cantilever end finger of the flexure to move radially and prevent the poppet from being pushed back. If the sleeve is moved farther, a groove on the sleeve engages notches on the fingers creating a detent that prevents the spring to push the sleeve back.
Abstract:
Apparatus, systems and methods for implementing flow cages and flow cage assemblies in association with high pressure fluid flows and fluid valves are provided. Flow cages and flow assemblies are provided to dissipate the energy of a fluid flow, such as by reducing fluid flow pressure and/or fluid flow velocity. In some embodiments the dissipation of the fluid flow energy is adapted to reduce erosion, such as from high-pressure jet flows, to reduce cavitation, such as by controllably increasing the flow area, and/or to reduce valve noise associated with pressure surge.
Abstract:
A pressure sensor including an enclosure and a bending resonator housed in the enclosure. The bending resonator includes a diaphragm connected to the enclosure, a piezoelectric layer on the diaphragm, and an electrode on the piezoelectric layer. The pressure sensor also includes an electrical terminal coupled to the piezoelectric layer and extending out through the enclosure. The electrical terminal applies an input signal to the piezoelectric layer to resonate the bending resonator. A resonance frequency of the bending resonator changes according to a change in an external pressure applied to the pressure sensor and the resonance frequency of the bending resonator corresponds to the external pressure applied to the pressure sensor.
Abstract:
Disclosed herein is a tunable diffraction grating using surface acoustic waves. In some embodiments, the tunable diffraction grating includes a piezoelectric substrate including an interdigital transducer (IDT) region and a delay line region; a plurality of IDT electrodes positioned in the IDT region, wherein the IDT electrodes are each individually addressable such that the voltage applied to each of the electrodes is phase shifted, and wherein the IDT electrodes provide the phase shifted voltage to induce surface acoustic waves in the piezoelectric substrate in a pattern which produce a grating in the delay line region. Advantageously, tunable diffraction gratings have many applications including spectrometers for orbiters and rovers to Mars.
Abstract:
A method of measuring temperature includes positioning a piezoelectric resonator in an environment exhibiting the temperature to be measured, applying an input signal to the piezoelectric resonator to resonate the piezoelectric resonator, varying a frequency of the input signal over a range of input frequencies, determining the resonance frequency of the piezoelectric resonator, and determining the temperature of the environment by referencing the resonance frequency of the piezoelectric resonator. The resonance frequency of the piezoelectric resonator changes according to a change in the temperature of the environment and the resonance frequency of the piezoelectric resonator corresponds to the temperature of the environment.
Abstract:
A plurality of phased array acoustic communication devices are used to communicate data along a tubulation, such as a well. The phased array acoustic communication devices employ phased arrays of acoustic transducers, such as piezoelectric transducers, to direct acoustic energy in desired directions along the tubulation. The system is controlled by a computer-based controller. Information, including data and commands, is communicated using digital signaling.
Abstract:
A flow energy harvesting system including a nozzle-diffuser defining a spline-shaped flow channel and a flow energy harvesting device in the spline-shaped flow channel of the nozzle-diffuser. The spline-shaped flow channel includes a converging portion, a diverging portion, and a constriction section between the converging and diverging portions. The flow energy harvesting device includes a flextensional member having a frame and a cantilever extending outward from the frame, and a stack of piezoelectric elements housed in an interior cavity defined in the frame. The cantilever is a non-piezoelectric material. The frame of the flextensional member is in the converging portion and the cantilever is in the constriction section of the spline-shaped flow channel. The frame is configured to deform and elongate the piezoelectric elements to generate a current based on the piezoelectric effect when a fluid flows through the spline-shaped flow channel and generates unbalanced forces on the cantilever due.
Abstract:
An arterial blockage percussive drill having a guiding sleeve, a drilling wire slidably coupled to the guiding sleeve and a percussive actuator coupled to the drilling wire to longitudinally oscillate the drilling wire into an arterial blockage.
Abstract:
A flow energy harvesting system including a nozzle-diffuser defining a spline-shaped flow channel and a flow energy harvesting device in the spline-shaped flow channel of the nozzle-diffuser. The spline-shaped flow channel includes a converging portion, a diverging portion, and a constriction section between the converging and diverging portions. The flow energy harvesting device includes a flextensional member having a frame and a cantilever extending outward from the frame, and a stack of piezoelectric elements housed in an interior cavity defined in the frame. The cantilever is a non-piezoelectric material. The frame of the flextensional member is in the converging portion and the cantilever is in the constriction section of the spline-shaped flow channel. The frame is configured to deform and elongate the piezoelectric elements to generate a current based on the piezoelectric effect when a fluid flows through the spline-shaped flow channel and generates unbalanced forces on the cantilever due.