Abstract:
Systems and methods for arrhythmia therapy in MRI environments are disclosed. Various systems disclosed utilize ATP therapy rather than ventricular shocks when patients are subjected to electromagnetic fields in an MRI scanner bore and shock therapy is not available. As the patient is moved out from within the scanner bore and away from the MRI scanner, the magnetic fields diminish in strength eventually allowing a high voltage capacitor within the IMD to charge if necessary. The system may detect when the electromagnetic fields no longer interfere with the shock therapy and will transition the IMD back to a normal operational mode where shock therapy can be delivered. Then, if the arrhythmia still exists, the system will carry out all of the system's prescribed operations, including the delivery of electric shocks to treat the arrhythmia.
Abstract:
Energy delivered from an implantable medical device to stimulate tissue within a patient's body is controlled. An electrical signal used to stimulate the tissue is changed from a first energy state to a second energy state during a magnetic resonance imaging (MRI) scan. The energy delivered is maintained at the second energy state after the MRI scan. A capture threshold of the tissue is then measured, and the energy delivered to the tissue is adjusted based on the measured capture threshold of the tissue.
Abstract:
Systems and methods for arrhythmia therapy in MRI environments are disclosed. Various systems disclosed utilize ATP therapy rather than ventricular shocks when patients are subjected to electromagnetic fields in an MRI scanner bore and shock therapy is not available. As the patient is moved out from within the scanner bore and away from the MRI scanner, the magnetic fields diminish in strength eventually allowing a high voltage capacitor within the IMD to charge if necessary. The system may detect when the electromagnetic fields no longer interfere with the shock therapy and will transition the IMD back to a normal operational mode where shock therapy can be delivered. Then, if the arrhythmia still exists, the system will carry out all of the system's prescribed operations, including the delivery of electric shocks to treat the arrhythmia.
Abstract:
An implantable medical device (IMD) includes a lead having one or more sensing electrodes and one or more therapy delivery electrodes, and a sensor configured to detect the presence of static and time-varying scan fields in a magnetic resonance imaging (MRI) environment. A controller, in electrical communication with the lead and the sensor, is configured to process signals related to tachycardia events sensed via the one or more sensing electrodes and to deliver pacing and shock therapy signals via the one or more therapy delivery electrodes. The controller compares the sensed static and time-varying scan fields to static and time-varying scan field thresholds. The controller controls delivery of anti-tachycardia pacing and shock therapy signals as a function of the detected tachycardia events, the comparison of the sensed static scan field to the static scan field threshold, and the comparison of the time-varying scan fields to the time-varying scan field thresholds.
Abstract:
A system and method of enabling detection enhancements selected from a plurality of detection enhancements. In a system having a plurality of clinical rhythms, including a first clinical rhythm, where each of the detection enhancements is associated with the clinical rhythms, the first clinical rhythm is selected. The first clinical rhythm is associated with first and second detection enhancements. When the first clinical rhythm is selected, parameters of the first and second detection enhancements are set automatically. A determination is made as to whether changes are to be made to the parameters. If so, one or more of the parameters are modified under user control.
Abstract:
This document discusses, among other things, an inductive component that can include a core having two portions: (1) a first portion composed of a first material having a first magnetic saturation level; and (2) a second portion composed of a second material selected to provide inductance for the inductive component when an external magnetic field is greater than the first magnetic saturation level. In an example, the first portion can be composed of a material having a relatively low magnetic saturation level (e.g., a ferrite), and the second portion can be composed of a material having a relatively high magnetic saturation level (e.g., a high permeability iron alloy).
Abstract:
Energy delivered from an implantable medical device to stimulate tissue within a patient's body is controlled. An electrical signal used to stimulate the tissue is changed from a first energy state to a second energy state during a magnetic resonance imaging (MRI) scan. The energy delivered is maintained at the second energy state after the MRI scan. A capture threshold of the tissue is then measured, and the energy delivered to the tissue is adjusted based on the measured capture threshold of the tissue.
Abstract:
An implantable medical device (IMD) includes a lead having one or more sensing electrodes and one or more therapy delivery electrodes, and a sensor configured to detect the presence of static and time-varying scan fields in a magnetic resonance imaging (MRI) environment. A controller, in electrical communication with the lead and the sensor, is configured to process signals related to tachycardia events sensed via the one or more sensing electrodes and to deliver pacing and shock therapy signals via the one or more therapy delivery electrodes. The controller compares the sensed static and time-varying scan fields to static and time-varying scan field thresholds. The controller controls delivery of anti-tachycardia pacing and shock therapy signals as a function of the detected tachycardia events, the comparison of the sensed static scan field to the static scan field threshold, and the comparison of the time-varying scan fields to the time-varying scan field thresholds.
Abstract:
A system and method of enabling detection enhancements selected from a plurality of detection enhancements. In a system having a plurality of clinical rhythms, including a first clinical rhythm, where each of the detection enhancements is associated with the clinical rhythms, the first clinical rhythm is selected. The first clinical rhythm is associated with first and second detection enhancements. When the first clinical rhythm is selected, parameters of the first and second detection enhancements are set automatically. A determination is made as to whether changes are to be made to the parameters. If so, one or more of the parameters are modified under user control.
Abstract:
This document discusses, among other things, an inductive component that can include a core having two portions: (1) a first portion composed of a first material having a first magnetic saturation level; and (2) a second portion composed of a second material selected to provide inductance for the inductive component when an external magnetic field is greater than the first magnetic saturation level. In an example, the first portion can be composed of a material having a relatively low magnetic saturation level (e.g., a ferrite), and the second portion can be composed of a material having a relatively high magnetic saturation level (e.g., a high permeability iron alloy).