摘要:
A portable, interactive medical electronic device exemplified by a defibrillator. The device obtains information about a patient's condition, such as ECG and transthoracic impedance data, directly from the patient, and information pertinent to the treatment of the patient indirectly through an operator of the device, and produces a medically appropriate action such as a defibrillation shock in response. Indirect information is obtained through information processing means that includes means for prompting the operator of the device and means for receiving the operator's responses thereto. Prompts may include both questions and instructions, and in one embodiment the information processing means obtains the assent of the operator before causing the defibrillation shock. Indirect information may include information as to whether the patient is conscious, and as to whether or not cardiopulmonary resuscitation has been performed. The ECG and transthoracic impedance data may be collected through a common pair of electrodes. In one embodiment the device produces an indication that the ECG data is invalid if the transthoracic impedance data indicates excessive motion on the part of the patient. When a defibrillation shock is determined to be medically appropriate, a control signal is produced that causes the charging of an energy storage means and the subsequent discharging of such energy storage means through the patient without further operator intervention. The device also includes a tape recorder for allowing later analysis of the use of the device, and means for holding the tape recorder drive means in a disengaged position until the device is opened for use. The device also includes testing means for enabling a person to test the condition of the device without opening the case in which it is enclosed, means for producing and recording a distinctive sound when and if a defibrillation pulse is delivered, and means for allowing the electrodes to be quickly disconnected so that emergency personnel can conveniently use the electrodes with their own equipment.
摘要:
A portable, interactive medical electronic device exemplified by a defibrillator. The device obtains information about a patient's condition, such as ECG and transthoracic impedance data, directly from the patient, and information pertinent to the treatment of the patient indirectly through an operator of the device, and produces a medically appropriate action such as a defibrillation shock in response. Indirect information is obtained through information processing means that includes means for prompting the operator of the device and means for receiving the operator's responses thereto. Prompts may include both questions and instructions, and in one embodiment the information processing means obtains the assent of the operator before causing the defibrillation shock. Indirect information may include information as to whether the patient is conscious, and as to whether or not cardiopulmonary resuscitiation has been performed. The ECG and transthroacic impedance data may be collected through a common pair of electrodes. In one embodiment the device produces an indication that the ECG data is invalid if the transthoracic impedance data indicates excessive motion on the part of the patient. When a difibrillation shock is determined to be medically appropriate, a control signal is produced that causes the charging of an energy storage means and the subsequent discharging of such energy storage means through the patient without further operator intervention. The device also includes a tape recorder for allowing later analysis of the use of the device, and means for holding the tape recorder drive means in a disengaged position until the device is opened for use. The device also includes testing means for enabling a person to test the condition of the device without opening the case in which it is enclosed, means for producing and recording a distinctive sound when and if a defibrillation pulse is delivered, and means for allowing the electrodes to be quickly disconnected so that emergency personnel can conveniently use the electrodes with their own equipment.
摘要:
An electrode includes a conductive adhesive layer and a conductive foil layer having a void therein. One such electrode may be mounted in conjunction with another electrode upon a release liner having one or more openings therein to facilitate electrical signal exchange between electrodes. A release liner may include a moisture permeable and/or moisture absorbent membrane. A release liner may alternatively include a conductive backing layer. A release liner may also include an insulating swatch covering an opening. A release liner may be implemented as a foldable sheet, such that multiple electrodes may be mounted upon the same side of the foldable sheet. A medical device to which the mounted electrodes are coupled may characterize the electrical path between the electrodes. The medical device may perform a variety of electrical measurements, including real and/or complex impedance measurements. Based upon one or more measurements, the medical device may provide an indication of electrode condition, fitness for use, and/or an estimated remaining lifetime. An electrode condition indicator, which may form a portion of the medical device, may generate, present, or display electrode condition and/or estimated remaining lifetime information via a visual metaphor, such as a fuel gauge.
摘要:
An electrotherapy device including at least one sensor operable to sense at least one physiological parameter of a patient. A controller is operably connected to the at least one sensor operable to receive signals from the at least one sensor corresponding to the at least one physiological parameter. Memory is operable to store computer-programming code executed by the controller. The programming code includes decision-making criteria operable to adapt a patient treatment in response changes to the detected at least one physiological parameter. At least one pair of electrodes is operably connected to the controller and operable to administer the treatment to the patient.
摘要:
This invention provides an external defibrillator and defibrillation method that automatically compensates for patient-to-patient impedance differences in the delivery of electrotherapeutic pulses for defibrillation and cardioversion. In a preferred embodiment, the defibrillator has an energy source that may be discharged through electrodes on the patient to provide a biphasic voltage or current pulse. In one aspect of the invention, the first and second phase duration and initial first phase amplitude are predetermined values. In a second aspect of the invention, the duration of the first phase of the pulse may be extended if the amplitude of the first phase of the pulse fails to fall to a threshold value by the end of the predetermined first phase duration, as might occur with a high impedance patient. In a third aspect of the invention, the first phase ends when the first phase amplitude drops below a threshold value or when the first phase duration reaches a threshold time value, whichever comes first, as might occur with a low to average impedance patient. This method and apparatus of altering the delivered biphasic pulse thereby compensates for patient impedance differences by changing the nature of the delivered electrotherapeutic pulse, resulting in a smaller, more efficient and less expensive defibrillator.
摘要:
A defibrillation system for patients of all ages may include an Automated External Defibrillator (AED) coupled to a set of universal electrodes. Universal electrodes may be reduced-size versions of adult electrodes, and may include an opening to lower effective impedance. The AED may include an adult/pediatric mode control or switch. Based upon the setting of the adult/pediatric switch, the AED may perform an adult defibrillation sequence or a pediatric defibrillation sequence. An adult defibrillation sequence may comprise delivery of one or more waveforms or shocks characterized by energies appropriate for adults, for example, 150 Joule biphasic waveforms. A pediatric defibrillation sequence may comprise delivery of one or more waveforms characterized by energies appropriate for children, for example, 50 Joule biphasic waveforms. Another pediatric defibrillation sequence may comprise delivery of an escalating low-energy shock sequence to a patient, such as a 25 to 50 Joule shock, followed by a 65 to 75 Joule shock as necessary, followed by one or more 100 Joule shocks as necessary.
摘要:
This invention provides an external defibrillator and defibrillation method that automatically compensates for patient-to-patient impedance differences in the delivery of electrotherapeutic pulses for defibrillation and cardioversion. In a preferred embodiment, the defibrillator has an energy source that may be discharged through electrodes on the patient to provide a biphasic voltage or current pulse. In one aspect of the invention, the first and second phase duration and initial first phase amplitude are predetermined values. In a second aspect of the invention, the duration of the first phase of the pulse may be extended if the amplitude of the first phase of the pulse fails to fall to a threshold value by the end of the predetermined first phase duration, as might occur with a high impedance patient. In a third aspect of the invention, the first phase ends when the first phase amplitude drops below a threshold value or when the first phase duration reaches a threshold time value, whichever comes first, as might occur with a low to average impedance patient. This method and apparatus of altering the delivered biphasic pulse thereby compensates for patient impedance differences by changing the nature of the delivered electrotherapeutic pulse, resulting in a smaller, more efficient and less expensive defibrillator.
摘要:
The invention provides a method for delivering electrotherapy to a patient through electrodes connected to a plurality of capacitors, including the steps of discharging at least one of the capacitors across the electrodes to deliver electrical energy to the patient, monitoring a patient-dependent electrical parameter (such as voltage, current or charge) during the discharging step, and adjusting energy delivered to the patient based on a value of the electrical parameter. The adjusting step may include selecting a serial or parallel arrangement for the capacitors based on a value of the electrical parameter. In another embodiment, the invention provides a method for delivering electrotherapy to a patient through electrodes connectable to a plurality of capacitors including the steps of discharging at least one of the capacitors across the electrodes to deliver electrical energy to the patient in a waveform having at least a first phase and a second phase, monitoring a patient-dependent electrical parameter (such as voltage, current or charge) during the discharging step, and modifying second phase initial voltage based on a value of the electrical parameter. The adjusting step may include selecting a serial or a parallel arrangement for the capacitors based on a value of the electrical parameter.
摘要:
This invention provides an external defibrillator and defibrillation method that automatically compensates for patient-to-patient impedance differences in the delivery of electrotherapeutic pulses for defibrillation and cardioversion. In a preferred embodiment, the defibrillator has an energy source that may be discharged through electrodes on the patient to provide a biphasic voltage or current pulse. In one aspect of the invention, the first and second phase duration and initial first phase amplitude are predetermined values. In a second aspect of the invention, the duration of the first phase of the pulse may be extended if the amplitude of the first phase of the pulse fails to fall to a threshold value by the end of the predetermined first phase duration, as might occur with a high impedance patient. In a third aspect of the invention, the first phase ends when the first phase amplitude drops below a threshold value or when the first phase duration reaches a threshold time value, whichever comes first, as might occur with a low to average impedance patient. This method and apparatus of altering the delivered biphasic pulse thereby compensates for patient impedance differences by changing the nature of the delivered electrotherapeutic pulse, resulting in a smaller, more efficient and less expensive defibrillator.
摘要:
A defibrillator having an energy storage capacitor network with multiple configurations selected according to patient impedance and desired energy level for delivery of an impedance-compensated defibrillation pulse is provided. The set of configurations may include series, parallel, and series/parallel combinations of energy storage capacitors within the energy storage capacitor network. The impedance-compensated defibrillation pulse may be delivered over an expanded range of energy levels while limiting the peak current to levels that are safe for the patient using configurations tailored for lower impedance patients and limiting the range of defibrillation pulse durations and providing adequate current levels for higher impedance patients. Configurations of the energy storage capacitor network may be readily added to extend the range of energy levels well above 200 joules.